
   

 

 

 

D7.1: Evaluation of existing methods and 
principles 

Fabrice Bouquet (INR), Frederic Dadeau (INR), Pierre-Alain Masson 
(INR), Zoltán Micksei (BME), Berthold Agreiter (UIB), Bruno Legeard 
(SMA), Michael Felderer (UIB), Stéphane Debricon (INR), Daniel 
Varro’ (BME), Elisa Chiarani, Federica Paci, Fabio Massacci 
(UNITN), Jan Jurjens (OU/TUD) 
 

Document information 

Document Number D7.1. 

Document Title  Evaluation of existing methods and principles 

Version 6.0 

Status Final 

Work Package WP 7 

Deliverable Type  Report  

Contractual Date of Delivery  M6 

Actual Date of Delivery  01 September 2009 

Responsible Unit  INR 

Contributors 

F. Bouquet, F. Dadeau, P.-A. Masson, Z. Micksei, 
B. Agreiter, B.Legeard, M. Felderer, S. Debricon, 
D.Varro’, E.Chiarani, J.Jurjens, F. Paci, F. 
Massacci,  

Keyword List  Model Based Testing 

Dissemination level PU 



 

Evaluation of existing methods and principles | version 6.0 | 
page 2 / 38 

 

Document change record 

Version  Date Status Author (Unit) Description 

0.1 26 June 2009 Draft F. Bouquet (INR) First version  

0.2 2 July 2009 Working F. Dadeau (INR) Paragraph 4.1 

0.3 2  July 2009 Working PA. Masson (INR) Paragraph 3.2 

0.4 22 July 2009 Working Z. Micksei (BME) Section 5 

1.0 22 July 2009 Draft B. Agreiter (UIB) Review 

1.1 27 July 2009 Working 

D. Varro’ (BME), E. 

Chiarani, F. Paci 

(UNITN) 

Quality check 

2.0 29 July 2009 Working B. Legeard (SMA) Review 

2.1 29 July 2009 Working 
J. Jurjens (OU/TUD), 

E. Chiarani (UNITN) 
Quality check 

3.0 30 July 2009 Draft F. Bouquet (INR) Review 

3.1 30 July 2009 Working 

J. Jurjens (OU/TUD), 

F. Massacci, E. 

Chiarani (UNITN) 

Quality check 

3.2 13 August 2009 Working 
B. Agreiter, M. 

Felderer (UIB) 

Section 2.1 and 

review 

3.3 23 August 2009 Working F. Bouquet (INR) Review 

4.0 25 August 2009 Draft 
F. Bouquet, PA 

Masson (INR) 
Review 

4.1 25 August 2009 Working E. Chiarani (UNITN) Quality check 

5.0 26 August 2009 Draft F. Bouquet (INR) 
Minor edits + revised 

version 

5.1 25 August 2009 Working E. Chiarani (UNITN) 
Minor edits + revised 

version 

5.2 31 August 2009 Working F. Bouquet (INR) Minor edits 



 

Evaluation of existing methods and principles | version 6.0 | 
page 3 / 38 

 

6.0 31 August Final 
J.Jurjen (OU/TUD), 

E. Chiarani (UNITN) 
Finalised version 



 

Evaluation of existing methods and principles | version 6.0 | 
page 4 / 38 

 

Executive summary 

This document provides a state-of-the-art overview on the Model-Based Testing (MBT) 
methods. The aim of this work package is to develop a method that can be used for 
security testing and takes evolution of a system into account. This document explains 
several elements that can be used to develop such a methodology. Tests are 
generated by a model-based approach. Test sets are based on particular coverage 
criteria, e.g. security requirements criteria.  

Following the Secure Change vision, we will propose a methodology based on the 
evolution of the requirements. We propose to rely on two test sets; the first one is 
computed from the model of security requirements before evolution, and the second 
one is computed from security requirements after the evolution. Parts of these tests will 
be dedicated to non-regression testing, whereas new tests will be generated in order to 
exercise the evolved requirements. We will develop a tool-supported methodology that 
is able to compute test cases and to determine the conformance of an evolvable 
system w.r.t. security requirements expressed through formal models.  

The document at hand consists of four parts. After an introduction on MBT, the 
modeling language for MBT is presented. In this chapter we further discuss associated 
tools. 

The second part presents selection and coverage criteria used in MBT. Such criteria 
are a very important element of a test approach because the test method explores a 
sub-part of the implementation or system under test and the criteria can give the 
degree of confidence in the generated tests. 

The third part discusses model-based security tests. This chapter introduces work 
about how security requirements can be tested in Secure Change. 

The last chapter presents regression with MBT. The regression test can be seen like 
the first step to establish an approach for validation of the evolution as proposed in the 
Secure Change project. 
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1 Introduction Approach MBT 

This chapter introduces concepts associated with the Model-Based Testing (MBT). 
Each element used or necessary for MBT will be identified and discussed.  

Modern software development has started to make use of models extensively, be it for 
a formal representation of the specification, or for the generation of code. As proposed 
in [51] we can distinguish between at least four different approaches for making use of 
models in the testing process. The authors begin their matter on the importance of 
modeling for the validation of a system. The question is where models originate from 
and what are they used for. The authors propose four alternatives: 

1. The same model is used for test case generation and for code generation of the 
actual system under test (SUT). 

2. The SUT is implemented manually out of the specification and the model is 
extracted in an automatic way from the implementation. It is then used in order 
to generate the tests 

3. The model is created manually starting from the system specification and it is 
then used to generate tests. 

4. Two distinct models are used, one to generate tests and one to generate code 
for the implementation. 

 

In fact, the first scenario has two problems. One is due to the lack of redundancy 
between the expected behavior of a system (model) and its actual behavior 
(implementation). This redundant information is crucial to establish a verdict. The other 
problem is due to constraints on the level of abstraction, the model should be very 
close to the implementation level to allow the generation of code.  

The second scenario also has the problem of lack of redundant information. The third 
and fourth scenarios provide the best conditions for verifying the quality of the SUT. 

For Secure Change the third and fourth scenarios, which consider a series of 
validations in which separate models are used for test generation, seem to be the most 
promising ones. The idea is to formalize the specification and create an abstracted 
view of the system. This abstract view allows the usage of dedicated tools to automate 
the production and the execution of tests. These scenarios are also the optimal ones 
according to [55] and [51]. In both cases the views of software developers and test 
engineers are presented in a separated way. 

In fact, the fourth scenario can be mixed with the first one. It is possible to have one 
single model, which is split into two separate views to establish a strong link between 
the implementation API and the model used for test generation. 

 

One of the major research areas in model-based testing is the automatic generation of 
test sequences. Test sequences must be executed on the implementation under test 
(IUT). Tools such as [68] or [94] (now Leirios marketed as Smartesting), [76] or [82], 
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work on models [50] in the form of concurrent automata like Statemate or UML 
statecharts with OCL or in the form of Pre/Post models like B or Z and generate tests 
which guarantee satisfaction of well-defined model coverage criteria such as the 
coverage of all transitions or states in the model, the coverage of effects, or the 
coverage of inputs. These techniques are based on coverage criteria of models and do 
not necessarily correspond to coverage criteria at the code level. 

A second approach also takes into account more dynamic criteria. The model is 
completed by other information, such as properties or schema that are used in the 
definition of so-called property-based coverage criteria. 

For example, a coverage criterion can be based on covering the test purpose or target 
that has to be defined by the user, usually in a similar formalism to the model of the 
implementation under test (IUT). Sometimes the user has to model the environment of 
the IUT. The tool combines the model of the IUT with the test purpose and/or 
environment to automatically generate tests focusing on behaviour specified by the 
purpose. The test purpose or environment can be seen as another form of test model. 
Such tools have been developed for several modeling paradigm as in [86] and [96] for 
transition systems, [87] for transition systems extended with data, [69] (currently being 
integrated into the Scade tool) and the [100] tool for Lustre. 

Model-based statistical testing (MBST) was also proposed as a black-box test 
technique that enables the generation of representative tests from the tester’s or user’s 
perspective [44]. In MBST a so-called usage model is built to describe the relevant 
system inputs, input sequences, and system responses as a discrete time Markov 
chain, a state machine annotated with transition probabilities. 

A specific feature of MBST is the estimation of test object reliability based on the test 
cases executed and test results [9]. Further extensions have been developed to define 
equivalence classes for the test oracles and incorporate requirements coverage of 
usage models and test cases. MBST is supported by academic [93] and commercial 
[90] tools. 
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2 Modeling for test 

In this chapter, we present an overview of several techniques using models in the 
testing process. We focus on the scenarios three and four introduced in the previous 
chapter because they have been considered as the most promising ones. We discuss 
one approach for scenario four, where two distinct models are used, one for testing 
and one for system modeling (Telling TestStories). The other approaches in this 
chapter represent scenario three, where the test model is extracted from the system 
specification and used for generating test cases (Transition/State Models, Symbolic 
Transition/State Models and Pre/Post Models). 

2.1 Telling TestStories 
Model-driven testing is based on the derivation of executable test code from models in 
a MDA manner [64]. It supports an implementation resp. technology-independent view 
on testing and the adaptation of tests to modified requirements with minor effort. This 
makes model-driven testing an ideal testing strategy for service oriented systems. In 
such a setting various component- and communication technologies, the dynamic 
adaptation and integration of services and the unavailability of service implementations 
and controls have to be considered. 

Telling TestStories (TTS) [24] provides a testing methodology and a framework for 
model-driven system testing of service oriented systems. Compared to many other 
model-based testing approaches, TTS is based on separated system and test models 
which are connected via common model elements. An overview of the TTS artefacts is 
depicted in Figure 1. 

The requirements model  contains the specification for system development. Its formal 
part consists of actors, use cases and types, denoted in a use case diagram and a 
class diagram. The formal requirements are based on written or non-written informal 
requirements.  
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Figure 1: Overview of TTS Artefacts 

 

The system model  describes the system structure and system behavior in a platform 
independent way. Its static structure is based on actors providing and requiring 
services and its dynamic structure is based on global workflows modeling the behavior 
between actors and local workflows modeling the behavior within actors. 

The test model  defines the test configuration, the test data and the test scenarios as 
so called test stories. Test stories are controlled sequences of service operation 
invocations exemplifying the interaction of actors. Test stories may be generic in the 
sense that they do not contain concrete objects but variables which refer to test values 
provided in tables. Test stories can also contain setup and tear down procedures and 
contain assertions for test result evaluation. The service operations and actors of a test 
story are shared with the system model. 

The test implementation  is generated by a model-to-text transformation explained in 
[26]. It generates test code that can be executed by a test execution engine. Adapters 
are needed for connecting to the system under test. 

Metamodels have been defined to define consistency and coverage criteria for the 
system and the test model. 

If the system model and the test model are created manually, then the framework 
checks consistency between them automatically and the test model has to fulfill some 
coverage properties with respect to the system model. Alternatively, if the system 
model is complete to a certain sense then behavioral parts of the test model can be 
generated or otherwise if the test model is complete, behavioral fragments of the 
system model can be generated. 

The metamodel elements can be mapped to UML metaclasses and can therefore be 
created and edited with standard UML tools. The system model can even be mapped 
to SoaML and the test model can be mapped to the UML Testing Profile which ensures 
compatibility with existing standards. 
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A very important property of TTS is the traceability between system requirements, 
service operations, test stories and the implementation. This enables the assignment of 
unexpected system behavior to requirements resp. to system or test model elements. 
Therefore, the system and test model can be created, transformed, executed and 
analyzed iteratively even in a test-driven manner based on changing requirements and 
services. Furthermore, TTS allows for the execution of tests during system 
development by creating mock services for unfinished parts of a system. 

2.2 Transition/State Models 
In this section, we address the conformance testing for systems modelled by using 
labelled transition systems (LTS or -- Labelled Transition System). We are mainly 
interested in the transition systems labelled with inputs and outputs [57] (also known 
IOLTS -- Input / Output Labelled Transition System) that are more widely used in 
conformity testing. Compared with the LTS, the IOLTS are particularly well suited to 
model reactive system, because they distinguish controllable actions from observable 
actions.  

In the following we clarify some notions and notations on systems transitions labelled 
by enrichment of the distinction input / output and the concept of quiescence. Then, we 
explore relationship with Ioco (Input-output conformance) used to determine the verdict 
conformity between the model and the system under test. Then we define the notion of 
test cases.  

The formalism of labelled transition systems (def. 1) allows to model a system in the 
form of sets of statements (including in particular the initial state of the system), name 
of actions (among which we can distinguish the internal action τ) and transitions. The 
modeling of a system and its environment can be described by a LTS, but in this case, 
there is no difference between emissions and receptions. Since for testing purposes, it 
is important to separate between what can be controlled and what can be observed, 
the enrichment of LTS in IOLTS (def. 2) by a signature action is useful. It may be noted 
that sets of action names input and output are separated. 

 

Definition 1 (Labelled Transition system – LTS).  A LTS is defined by a quadruplet < 

Q, q0, A, → > where: 
- Q is a bounded set of non empty state, 
- q0 ∈ Q is the initial state of system, 
- A ∪ {τ} is a set of action terms with specific action τ ∉ A. τ characterized all 

internal action (unobservable). We noted Aτ = A ∪ {τ} 

-  → ⊆ Q x Aτ x Q transition relation. 
 

Definition 2 (Input Output Labelled Transition syst em – IOLTS).  An IOLTS is 
defined by a quadruplet < Q, q0, A, → > where: 

- Q is a bounded set of non empty state, 
- q0 ∈ Q is the initial state of system, 
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- A ∪ {�} is a set of action terms with specific action τ ∉ A. τ characterized all 
internal action (unobservable). A = AI ∪ AO and AI ∩ AO = ∅ with AI set of all 
input actions (received) and AO set of all output actions (sending). Input and 
output actions can be activate from any state. 

-  → ⊆ Q x Aτ x Q transition relation. 
 

The notion of quiescence (def. 3) explains normal blocking situations of the system. 
Among these blocking situations, we can distinguish: 

• The blocking of exit (or output lock): this is a deadlock in a state from which no exit 
action and no internal action are specified.  

• The "deadlock": these blocking situations arise in a state from which no transition is 
activated.  

• The "livelock": these situations arise when there is a path (not empty) of internal 
actions from a state that leads to the same state.  

This quiescence is represented by the special action δ. In practice, observation of 
quiescence in the execution of a test case is performed at the expiration of a timer. 

 

Definition 3 (Quiescence) .  As an IOLTS < Q, q0, A, → >, a state q ∈ Q is called 
quiescence if there is no transition of Aτ activable from the state q. 

 

To compare the system under test to its model, the formal relationship can be verified 
with all the correct implementation with regard to the model. The ioco conformance 
relation [57] is based on inclusion of traces. An implementation I conforms to its 
specification S, if for every trace σ of S, the system under test produces outputs and 
quiescence included in the model. A test case and IOLTS statements are marked by 
Pass, Fail or Inconclusive. This marking will set the verdict. Running a test case is 
conducted by parallel composition of the latter with the system under test. The verdict 
is given by the marking of the status achieved by a complete trace of the parallel 
composition of the test case and system under test.  

To be complete, the generation of test cases should consist of extracting all traces of 
the model leading to a deadlock situation. In practice, we are quickly confronted with 
situations of combinatorial explosion due to the number of statements, branches and 
loops. 

The finite state machines are very close to the labelled transition systems. As shown in 
definition 4, the difference lies in the fact that the sets of states and transitions are finite 
and that all statements of acceptance are used to determine the correct execution of 
the system. 

 

Definition 4 (Finite Sate Machine - FSM).  A Finite State Machine is a quintuplet < S, 

Σ, δ, s0, F >, where:  

- S is a finite set of states, 
- Σ is a finite set of actions, 
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- δ ; S x Σ → S a transition function, 
- s0 ∈ S is the initial state, 
- F ∈ S is a set of all final states. 

 

The Unified Modeling Language (UML) is widely used as a modeling support for 
model-based testing. There are several reasons for this interest. First, UML provides a 
large set of diagrammatic notations for modeling purposes, with several 
complementary representations. A static representation (i.e. class diagrams) is used to 
model the points of control and observation of the IUT and the data that represent the 
abstract state of the IUT. A dynamic representation (e.g. state diagrams or activity 
diagrams) is used to model the expected behaviour of the IUT. Second, the Object 
Constraint Language (OCL [60]) associated with UML makes it possible to have 
precise models – this means that the expected behaviour can be formalized using 
OCL. Third, UML is the de-facto industrial standard for modeling enterprise IT 
applications; most software engineers have had some first level training on UML – this 
is an important point to facilitate the acceptance of a disruptive process such as model-
based testing. 

However, UML contains a large set of diagrams and notations, defined in a flexible and 
open-ended way using a meta-model and allows for different interpretations of the 
semantics of the diagrams by different UML tools. So for practical model-based testing 
it is necessary to select a subset of UML and clarify the semantics of the chosen 
subset so that model-based testing tools can interpret the UML models. 

There are numerous model-based testing approaches that use UML as a modeling 
notation. Some of them are based on sequence or interaction diagrams to express 
scenarios (see e.g. [11]), state machines to express behaviour models (see e.g. [59]) 
or combine them (see e.g. [17]). Few approaches are using OCL as an action 
language for model-based testing. B. K. Aichernig proposes an approach based on 
mutation analysis of OCL specifications [13], and [10] proposes a combination of test 
cases using very similar approach. But currently, there is no subset of UML/OCL 
clearly proposed for model-based testing, except in [15]. This subset is UML/OCL used 
by [94] model-based testing tool. 

 

2.3 Symbolic Transition/State Models 
Symbolic Labelled Transitions Systems (SLTS) or STS (Symbolic Transition System) is 
an extension of labelled transition systems taking into account the explicit data flow. 
The definition of an STS is given in definition 5, [31], shows that the enrichment-related 
assets in STS are the introduction of:  

- State variables,  

- Parameters of action,  

- Guards on transitions (expressed on state variables and parameters)  

- Terms expressing changes of state variables during transitions. 
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Definition 5 (Symbolic Transition System - STS) . A Symbolic Transition System is 7-

uplet < L, l0, ν, t, I, A, →>, where:  
- L is a finite set of states, 
- l0 is the initial state, 
- V is the set of state variables 
- I is the set of parameters, 
- A is the set of action, 

- → ⊆ L x A x P(V ∪ I) x T(V ∪ I)V is transition relation, with P(V ∪ I) a set of first 
order logic formula on the state variables and parameters (guard of action) and T(V 
∪ I)V  a set of terms on the state variables and parameters describe modification of 
state variables by the action. 

 
The semantics of STS is given in terms of LTS [31, 45]. The use of labelled transition 
systems for generating symbolic tests requires the use of other techniques than a 
simple path finding in a reachability graph. For example, the symbolic animation of the 
model can extract symbolic test cases that will be instantiated by a solver. 

 

2.4 Pre/Post Models 
The B language [1] is a modeling language based on the logic and the set theory. A 
system is modeled as an abstract machine (or a set of abstract machines as part of the 
composition of machines and the process of refinement). A B machine consists of 
various clauses including:  

SETS: declaration sets listed  

CONSTANTS: declaration of constants  

PROPERTIES: properties on constants  

VARIABLES: declaration of variables  

INVARIANT: definition of invariant properties on the system  

ASSERTIONS definition properties arising from the invariant  

INITIALIZATION: initialization of variables  

OPERATIONS: Operations  

The system actions are defined by operations in the form of substitutions. Among the 
operators of substitutions, we find substitutions kept (ANY, SELECT), substitutions of 
choice deterministic (IF, CASE) or indeterminate (CHOICE), substitutions of 
assignment (:=, :∈), without the substitution effect (skip) and multiple substitutions (||), 
which allows substitution of composing two in parallel. The B language was introduced 
as part of the method B [1] that aims at the development of software, from its 
specifications, in successive stages of refinement and proof. Firstly, the system is 
formalized at a high abstraction level, and then it is refined by successive stages to 
reach the abstraction level of the implementation from which the code of the 
implementation can be produced. During this process, the proof allows to:  
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- Check the consistency of a machine, by proving that the invariant is preserved by the 
substitutions of the initialization and of the operations,,  

- Check the refinement, which means proving the a machine is a correct refinement of 
another (more abstract) one. 

As a consequence, many tools have been developed around the B language, including 
model-checkers, that allow for test generation from B models. Some of these tools are 
presented in the following sections. 

 

The JML [42] is an annotation language for Java programs. It allows to model 
specification in a program in the form of annotations that can be:  

- Pre-conditions and post-conditions on the functions and methods,  

- Class invariants,  

- Loop invariants.  

The JML is based on a concept of design by contract, whose main idea is that 
interactions between a class and its clients are governed by contracts expressed by 
properties. Thus, the "client" guarantees the respect of certain constraints when calling 
a method of a class (respect of the preconditions of the method). This guarantees the 
respect of some class properties (expressed as post-conditions) in return. The 
properties are expressed in first-order logic on the attributes of the class and the 
parameters of methods or functions. For example, Figure 1 shows the JML annotations 
to a method of swapping two values in an array of integer (tab [i] and tab [i + 1]):  

- Requires the clause gives the pre-conditions of the method,  

- Ensure the clause gives the post-conditions of the method,  

- Assignable clause gives variables whose value can be changed.  

 

/*@ requires tab != null && tab.length > 1 && i>=0 && i+1<tab.length;  
@ ensures (\forall int j; ((j>=0 && j<i)||(j>i+1 && j<tab.length)) ==> tab[j]==\old(tab[j]))  
@ && tab[i]==\old(tab[i+1]) && tab[i+1]==\old(tab[i]);  
@ assignable tab[i],tab[i+1];  
@*/  
void permut(int[] tab, int i){  
int temp0 = tab[i];  
tab[i] = tab[i+1];  
tab[i+1] = temp0;  
}  
Figure 2. Example of JML annotation 

Many tools have been developed for JML, the best-known being:  

- Jmlc: a compiler that can compile JML annotations in the Java bytecode enabling 
assertion checking at runtime,  

- The unit testing tool that combines jmlunit compiler JML and JUnit tool to use JML 
annotations for the preparation of verdicts,  

- The static verification tool escjava2, which uses JML annotations to detect errors,  
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- The Key proverb based sequent calculus that is used to generate proof obligations 
from JML annotations and prove them in an automatic or semi-automatic manner. 

Furthermore, we cite two tools for test generation from formal specifications in JML: 
JML-TT and Jartege. 

 

ASML languages [7, 8] and spec # [19] are two modeling languages based on the ASM 
(Abstract State Machine). The ASM is based on the description of statements and 
symbolic functions of transformation of these states. Spec # model takes the form of 
annotations in a C #. It allows defining a DSO through the formalization of pre-
conditions and post-conditions. The tool for test generation specExplorer supports 
these languages 
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3 Test Selection and Coverage Criteria 

An issue of model based-testing is to be able to measure and insure coverage from 
test to the model. The intention guarantees only test coverage on model and not on 
IUT. We identified two kinds of criteria to insure coverage. 

3.1 Static Criteria 
Static criteria are based on two coverage approaches: control flow oriented and data 
flow oriented.  

3.1.1  Control flow graph criteria 

To adopt a method for structural testing based on the cover of the graph control is to 
propose a certain set of paths on a graph in order to form tests campaign. Satisfy a 
structural testing method for a given coverage is therefore to find tests that enhance 
control paths (i.e. paths of execution) and covering paths provided by the method 
adopted. Under the criteria based on the graph control, there are many criteria for 
coverage: 

• Coverage of all-nodes or statement coverage,  

• Coverage of all-arcs or decision coverage,  

• Coverage of path and internal boundaries,  

• Coverage of all i-paths,  

• Coverage of all paths.  

This list is ordered from the lower criterion to test to the highest (exception made of the 
cover paths and internal limits that is not classifiable). In general, the stronger this 
criterion is the higher is the number of test data to satisfy. 

 
To cover criteria, a test suite must activate a dedicated part of specification as follow 
[58]: 

• State Coverage (SC):  test suite must execute every reachable statement 

• Decision Coverage (DC) : test suite must ensure that each reachable decision is 
made true by some tests and false by others tests. Decisions are the branch criteria 
that modify the flow of control in selection and interaction statement. 

• Path Coverage (PC) : test suite must execute ever path to satisfy through the 
control flow graph. 

• Condition Coverage (CC):  test suite achieves CC when each condition is tested 
with a true result and also with a false result. For condition containing N conditions, 
two tests can be sufficient to achieve CC. 
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• Decision/Condition Coverage (D/CC):  test suite achieves D/CC when it achieves 
both decision coverage (DC) and condition coverage (CC). 

• Full Predicate Coverage (FPC):  test suite achieves FPC when each condition is 
forced to true and to false in a scenario where that condition is directly correlated 
with the outcome of the decision. 

• Modified Condition/Decision Coverage (MC/DC):  This coverage strengthens the 
directly correlated requirement of FPC by requiring the condition c to independently 
affect the outcome of the diction d. A condition is shown to independently affect a 
decisions outcome by varying just that condition while holding fixed all other 
possible condition. 

• Multiple Condition Coverage (MCC):  test suite achieves MCC if it exercises all 
possible combination of condition outcomes in each decision. 

 
In [48], for code-based coverage we have PC � DC � SC, where C1 � C2 indicates 
that every test suites satisfies C1 also satisfies C2. 

More generally as propose in [58], fig. 3 give hierarchy between criteria. 
 

 
Figure 3 – The hierarchy of control flow coverage criteria 

In some case, we can define dedicated criteria as transition based coverage criteria as 
in Finite State Machines. These criteria are close to the previous criteria. 

3.1.2  Data flow criteria 

Control flow can be annotated with extra information regarding the definition  and use  
of data variables. Informally, a definition of a variable is a write to the variable and a 
use of a variable is a read from it. For a given variable v, we say that (d,u) is a def-use 
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pair if d is a definition of v and u is a use of v, and there is a path from d to u that is free 
to other definitions of v. So data flow criteria attempt to cover: 

- All-defs : the all-definition criterion requires a test suite to test at least one def-
use pair (d,u) for every definition d, that is, at least one path from each definition 
to one of its feasible uses. 

- All-uses : the all-uses criterion requires a test suite to test all def-use pairs (d,u). 
This means testing all feasible uses of all definitions. 

- All-def-use-paths : The all-def-use-paths criterion requires a test suite to test all 
def-use pairs (d,u) and to test all paths from d to u. 

We have this hierarchy: 

 

All-def-use-paths � All-uses � All-defs 

 

We can define complementary criteria with external additional information on the 
model.  

 

3.2 Dynamic Criteria 
Dynamic criteria are about the sequencing of states or actions of the model. Several 
ways have been explored to express such criteria. For example in [4], the dynamic 
criterion is a sequencing of states expressed as a temporal logic (PLTL) property. It is 
a sequencing of actions expressed in the shape of an IOLTS in [18] and [35], or as a 
regular expression in [43].   

We propose to describe a dynamic criterion, denoted as TP for Test Purpose, as a 
sequencing of states and actions. Its semantics is an automaton whose states are 
interpreted as state properties and whose transitions are labelled by action names. 

In our approach, the validation engineer manually describes by means of a test 
purpose TP (see Def. [TP]) how he intends to test the system, according to his know-
how. We have proposed in [37] a language based on regular expressions, to describe 
a TP as a sequence of actions to fire and states to reach (targeted by these actions). 
States are described as state predicates. Actions can be given either explicitly, or 
under the generic name $op.  

 

Definition [TP] (Test Purpose).  A test purpose on a model M (with a set OM of 
operations) is a tuple <QP , q0

P, TP , λP , QP, Qf
P> where QP is a finite set of states, q0

P 
is an initial state, Qf

P ⊆ QP is a set of accepting states, TP ⊆ QP × (OM ∪ {$op}) × QP is 
the set of labelled transitions and λP ⊆ QP → PredM is a total function that associates 
with each state q a state predicate denoted as λP(q) (⊆ PredM). 
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In [38], we have presented a test generation approach from a TP and a B model, in 
which every action is described by an operation. This method proceeds by unfolding all 
paths of the automaton associated to the TP. Each path is a symbolic test, in the sense 
that the values of the operation parameters are not defined. They will be defined by an 
instantiation phase that uses constraint solving techniques and boundary valuation 
strategies. Also, the test must be concretized to become executable on the IUT. This 
approach has been successfully experimented on the industrial application IAS 
(Identification Authentication and Signature) with Gemalto. 

 

(a) 

 

(b) 

 

Figure 4 – Generating tests from dynamic selection criteria 

 

Our approach is depicted in two views in Fig. 4. View 4(b) shows the usual MBT 
process with static (structural) selection criteria. The MBT process with dynamic criteria 
is obtained by replacing the input M of View 4(b) by the output SP of View 4(a). 

 

View 4(b).  From a behavioural model M written by the validation engineer and from 
static selection criteria on the control structures of the model, the test generation tool 
computes a set of abstract tests AT. The instantiation computes parameter values for 
the operation calls, providing a set of instantiated tests IT. This relies on data selection 
criteria such as boundary valuation strategies. These tests are still as abstract as M 
and must be concretized via a concretization layer CL into a set of concrete tests CT, 
that are executed on the IUT. This delivers a verdict of success or failure, by 
comparing the results predicted by M with those returned by the IUT.  

View 4(a).  The input M in View 4(b) is replaced with a model SP that results from the 
synchronization of M with a dynamic selection criteria TP. Thus executions of SP are 
executions of M that match TP. 

3.3 Model-based testing and verification techniques  
Research on model-checking has focused on the ability of these tools to fight the state 
space explosion and on increasingly expressive modeling paradigms and languages to 
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express the property to be proved. Tools such as SPIN [84], Uppaal [88], CADP [77] 
have been developed to prove reachability, safety, liveness and fairness properties 
expressed in temporal logics on models in the form of communicating automata, timed 
automata models or process algebra. A recent evolution is the use of SAT or SMT [65] 
solvers to perform bounded model checking on infinite-state systems (SAL) [73], hybrid 
systems (HySAT [74], HyTech [83]) or Lustre (Prover). 

Another direction is probabilistic model-checking with tools like PRISM [92] and 
statistical model-checking [22] which goal is to qualitatively or quantitatively evaluate 
the satisfaction of a property on a model. 

 

Embedded systems have particular characteristics to be taken into account by V&V 
tools. They are often cyclical reactive systems that must be modelled using specialized 
paradigms such as synchronous languages, for which specialized tools such as Gatel 
and Prover have been developed. A combination of continuous and discrete-event 
behaviour may need to be modelled, using the hybrid systems paradigm. 

This is treated by the HySAT model-checker but the research on testing of hybrid 
systems is a very recent research area [16]. They are usually real-time so models with 
an explicit representation of time, or at least the order in which discrete events take 
place, are necessary to represent timing properties. This is possible in the analysis 
tools based on timed automata or Petri Nets because timing properties are more 
susceptible to analysis than to test. The software used for embedded systems is often 
concurrent meaning that all possible inter-leavings of concurrent behaviour must be 
taken into account. Here again, analysis techniques are better developed than test, 
although there is research on test of concurrent systems [54]. Because of the close 
integration of software and hardware for embedded systems, software must often be 
tested in the target environment, introducing problems of injection of test-case values 
and observability of results. This has motivated the development of simulation 
languages such as SystemC [102] and methodologies to test embedded software with 
hardware in the loop. The model of computation introduced with the Signal 
synchronous language [67], then further developed in the Polychrony [89] workbench 
and industrialized in RT-Builder [101], consists in considering a median (polychromous 
or multi-clocked) model of computation into which heterogeneous specification can be 
interpreted, and from which sequential or distributed real-time code can be generated, 
used for analysis, simulation and test purposes. 

 

The first question addressed by this project is the relationship between the specialized 
models used in model-based V&V and more global models used for model-based 
design and development, including the question of how to obtain V&V models from 
requirements, specifications and design and development models. Model-based V&V 
technologies also pose the second problem addressed by this project: the link between 
the model and the implementation that is necessary to ensure that properties 
verified/validated on the model are satisfied by the implementation. Although automatic 
code generation was supposed to eliminate this problem, we see that on the one hand 
automatic code generation does not always guarantee that the semantics of the model 
and the implementation are identical in all respects and on the other hand, the 
implementation often includes portions of code which have had to be developed by 
hand or which correspond to "library" or "external" components of the model whose 
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semantics is left implicit. This second problem will be addressed with the aid of a 
second class of V&V tools which have attracted a lot of research effort and which are 
now relatively mature. These are the tools that work on the source code of the 
implementation, either analyzing it statically or generating tests to cover objectives 
(such as coverage criteria) defined on the implementation. 

 



 

Evaluation of existing methods and principles | version 6.0 | 
page 23 / 38 

 

4 MBT for Security 

This section presents the use of the Model-Based Testing process in the context of 
testing the security of a system. This section is divided into two parts. The first one 
deals with a functional approach in which the security aspects of the system are 
embedded within the model and the subsequent test generation approach focuses on 
these aspects to exercise it. The second part is dedicated to approaches that consider 
a modification of the model that represents common attacks that can be performed on 
the system.  

4.1 Functional approach 

A part of the security requirements w.r.t. a system can be expressed as security 
properties. Here, we consider a context in which the security aspects of the system are 
embedded within the functional model. From the model, a set of security properties is 
formally expressed. These properties should hold on the model as it incorporates the 
security aspects. We do not address here the question of formal verification of these 
properties on the model. This can be achieved for example by model-checking. The 
aim of testing w.r.t. security properties is to validate that the properties also hold on the 
implementation under test (IUT). A formal verification of the IUT is usually out of reach 
due to its impracticable size. 

Our idea is to use the security properties as test purposes, i.e. as dynamic selection 
criteria, to guide the test generation. We have exposed in [46] that this is a mean to 
automatically generate security tests from the model. 

Now that we are in the context of life-long evolving systems, change has to be taken 
into account to see the impact it has on a test suite, dedicated to security. We present 
here an approach from Fraser, Aichernig and Wotawa [30], to handle model changes 
for regression testing purposes, or to update a test suite. The approach is based on 
model-checking. It aims at reducing the effort of recreating test suites after a model is 
changed. It also allows for minimizing the number of regression tests after a change. 

The considered models are Kripke Structures, i.e. state/transition models. States are 
labelled with a set of atomic propositions (on the state variables) that hold in this state. 
A transition relation models the passing from a state to another.   A test case is a finite 
prefix of a path of Kripke’s structure, with its oracle. It can automatically be converted 
into a verifiable model [3]. A test suite is a set of test cases, issued from a version of 
the model. 

In case of a model evolution, some of test cases in the test suite issued from the 
previous version of the model become invalid (i.e. obsolete), while others remain valid. 
Invalidity is pronounced if the test case goes through a state or a transition that no 
longer exists in the new model, or if it goes through a state whose labelling has 
changed. 
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Ideas presented in the paper permit to decide by model-checking if a test case are still 
valid after a model change. After what valid test cases can be used as regression tests, 
whereas the invalid ones can be used as non stagnation tests (to test that what was 
supposed to change has indeed changed). Additionally, new test cases are created by 
either adapting the old (invalid) ones (i.e. by re-computing their oracle), or by 
selectively creating new ones. Model-checking is used to compute or adapt new test 
cases. 

4.2 Decision of Validity or Invalidity 

 

Deciding about the validity of tests in the old test suite can be obtained by symbolically 
animating all the tests on the new model. Tests for which the results have changed or 
that can no longer be animated are the invalid ones. The others are valid. With a 
model-checker, this result can be obtained by model checking a special temporal 
property on the test case model. The property claims that output values of the test case 
and the new model are equal for the length of the test case. Each test case that results 
in a counter example is invalid. Remaining tests are still valid, which means that they 
are not affected by the model change. The drawback of this approach is that the whole 
new model is involved in model-checking. 

To avoid this, the validity or invalidity of a test case can preferably be obtained by 
checking its model against some temporal properties called change properties. They 
can be created automatically from the model source file. If a transition condition or 
target is changed, a test case is still valid if it fulfils the property 

 

G(changed_condition   ⇒   X variable=changed_value). 

 

This property claims that on a changed condition, the value of a variable after the 
transition equals the changed value. 

 

If a variable transition is removed, it can only be determined whether a test case takes 
the old transition using a negated property 

 

G(old_condition   ⇒   X  ¬(variable = old_value)). 

 

This property claims that on an old condition, the value of a variable after the transition 
does not equal the changed value. Any test case that takes the old condition results in 
a counter example. 
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4.2.1 Creation of the New Tests 

For the creation of the new tests, 3 methods are proposed in [30]. 

  

Adaptation.   This first method adapts the old test to the new model, by re-computing 
the oracle of tests from the new model. The test-case model contains a state counter 
State, and a maximum value MAX. The adaptation can be obtained by querying the 
model-checker with a particular property, which achieves a trace where the value of 
State is increased up to MAX. The drawback of this method is that some new 
behaviours will not be covered, if there are no related obsolete test cases.  

Update.  The update method is based on trap properties [32]. It is a generalisation of 
[62] on trapping differences between two versions of a model, by means of a 
comparator.  A trap property is a temporal property dedicated to achieving a given 
coverage. For example, claiming that a particular (reachable) state cannot be reached 
achieves the coverage of that state. Depending on which coverage criteria are 
targeted, a set of trap properties is chosen accordingly. Here, a set P of trap properties 
is computed for the model before change, and a set P’, achieving the same coverage, 
is computed for the model after change. The new tests are obtained by model-checking 
trap properties in the difference P – P’. 

Focus on Model Changes.  This method proceeds by automatically rewriting the 
property and the model before the model-checker is called. The principle of the 
rewriting is as follows:  

Rewriting of the model: a boolean variable named change is added to the model (in 
fact, one boolean variable change is added per change). The change variable is 
initialized to false, and it takes the true value when the change occurs. It keeps the true 
value afterwards. 

Rewriting of the property: all temporal operators in the formula are re-written to include 
an implication on the change variable. This achieves that only such counter examples 
are created that include the changed transition. 

As we have seen, this approach is based on state-transition models and temporal 
properties, and it makes use of model-checkers. Querying a model-checker with a 
temporal property has some similarities with animating a test purpose on a behavioural 
model, in the sense that it computes selected traces by means of a dynamic selection 
criterion. So we wonder if the approach of [30] could be adapted to our framework, 
where we use pre-post models instead of state-transitions ones, and where we perform 
symbolic animation rather than model-checking. 
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4.3 Attack approach 
Usually models that are used for the test generation are supposed to be correct and 
attack-resistant. In an attack-driven approach, a common practice is to downgrade the 
model so that he might actually contain an error that can be revealed by an attack. 
Figure 5 illustrates this principle.  

 

  

Figure 5. Model modification to accept attacks 

The model modification makes it possible to play attack scenarios on the model so that 
the response provides an observable answer to the attack. Once a test representing 
the attack is actually played on the IUT, if this latter reacts as the modified model, then 
the IUT presents a weakness.  

This approach is called mutation-based testing [49]. Mutations that are introduced are 
done according to a fault model. It may represent simple syntactical modifications (e.g. 
replacement of mathematical operators) or more complex ones, motivated by the 
semantics of the considered model/system.  

The modified model is then used in a standard test generation process. Nevertheless, 
the mutation guides the test generation so as to be able, at test case generation time, 
to focus on introduced errors [28]. [29] present notions of relevance of test cases w.r.t. 
(possibly security) properties, based on their error detection capabilities.  

In [47], authors present a set of security mutations in access control policies express in 
OrBAC, it can be used to drive the test generation. In this context, generated tests will 
be dedicated to requesting, in specific configurations, access to secure data that 
should be denied by a safe system. The success of the access, and thus, the revealing 
of the secret, makes it possible to conclude on the presence on errors in the IUT.  

In terms of mutation testing for system security robustness, a preliminary work has 
been done by mutating the model as to simulate environment perturbations that the 
system has to respond [23]. This kind of mutation can be classified as invasive 
because it involves non-functional aspects of the IUT.   
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A related work has be done by [40], based on fault-injection techniques. The idea is to 
introduce security errors in UMLsec models [39], and to use the UMLsec analysis tools 
(model-checkers, etc.) to build traces leading to the error. These traces are then used 
as test cases that are concretized to be executed on the system. The mutations 
performed are based on adding vulnerabilities in the model, such as missing plausible 
checks or wrong use of identities, originating from [5].  

Recently, an overview of possible vulnerability leaks that may appear in systems, 
including buffer overflows, SQL injection techniques, etc. This team, in the context of 
the European project SHIELDS (FP7/2007-203), has proposed a model of 
vulnerabilities causes, named Vulnerability Cause Graph (VCG), from which is derived 
a formalism called Vulnerability Detection Condition (VDC) aiming to automatically test 
the source code to detect vulnerabilities. This test generation is done by the TestIng 
[70] tool.  
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5 Regression Testing 

Changes in software’s artefacts throughout its lifecycle could make previously fixed 
bugs re-appear or brake existing functionality [14]; therefore systems should be 
retested after a modification is made. Changes can happen in subsequent 
development phases or after the software enters its maintenance phase. This retesting 
is usually referred as regression testing [12]. 

Regression testing is defined as “selective retesting of a system or component to verify 
that modifications have not caused unintended effects and that the system or the 
component still complies with its specified requirements” [33]. Therefore, the intention 
is to test whether what was working before is still working, and previously fixed bugs do 
not reappear. 

Regression testing can be performed on any testing level (i.e., module, integration, 
etc.), and it can cover both functional and non-functional requirements. However, 
rerunning every test after each of the modifications is not feasible, thus a trade-off must 
be made between the confidence gained from regression testing and resources used 
for it [34]. For this reason, several regression testing techniques were proposed over 
the years, e.g. to select only a subset of the regression test suite, what is relevant for 
the current change, or to identify those new parts of the system, which are not covered 
by existing tests. 

5.1 Regression testing techniques 
The research in the field of regression testing focused on the following problems: 

a) Regression test selection: select only tests from the regression test suite that 
are affected by changes. 

b) Test suite minimization: find a minimal subset of test cases that preserves the 
coverage with respect to a certain criterion of the original test set. 

c) Coverage identification: identify those parts of the system that need additional 
tests due to the change. 

d) Test prioritizing: optimize the order of tests according to some criteria, e.g. to 
run those tests first which are more likely to uncover bugs or which need less 
time to run. 

e) Test suite execution: automatically execute the test in an efficient way. 

For regression test selection techniques the basic idea is similar to the one used in 
build systems (e.g. the make tool), namely that at each build only those files need to be 
recompiled that have been changed or depend on a file that have been changed. 
Similarly, to reduce the size of the regression test suite, and thus reduce the time and 
resources needed to execute it, one can select only those tests that work on changed 
parts of the system. Rothermel and Harrold published a detailed survey paper about 
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regression selection techniques [52]. They evaluated several techniques according to 
their inclusiveness, precision, efficiency and generality. The surveyed techniques 
consisted of linear equation, symbolic execution, path analysis, dataflow, program 
dependence graph, system dependence graph, modification based, cluster 
identification, slicing, graph walk techniques, etc. Each technique had its strength or 
weakness; some were able to uncover more errors, while some computed the selected 
tests very fast. 

As the test suite grows and changes, some tests become redundant. Test suite 
minimization techniques remove test cases from the tests suite to retain only a minimal 
number of test cases, while providing the same level of coverage than the original test 
suite [36]. However, care must be taken, because removing too much test cases can 
reduce its fault detection effectiveness. 

Changes in the system can introduce new parts, which are not exercised by existing 
tests. Coverage identification can map these parts of the system. Simple approaches 
can use code coverage analysis tools [63] to uncover changed portions not touched by 
existing tests. More advanced approaches typically use some sophisticated data 
structure, e.g. program dependence graphs [27] that capture also data and control 
dependencies in the source code. 

Test prioritization techniques can have several goals. One can optimize the order of 
the test suite to increase the rate of fault detection, code coverage, or the rate at which 
high-risk faults are detected. Rothermel et al. analyzed in [53] nine test prioritization 
techniques (e.g. random, prioritize in order of coverage statements, etc). Their 
conclusion was that even simple approaches (which are quite easy to implement and 
inexpensive) can improve the rate of fault detection. However, the performance 
overhead of more sophisticated approaches was still a bit high. 

Test suite execution techniques concentrate on the automatic execution and evaluation 
of test cases. These techniques moved into the practice over the years, as most of the 
current testing tools have these functionalities.  

5.2  Tools for regression testing 
Running a set of regression tests is usually part of the automatic build procedures of 
popular, modern software development processes. However, industrial testing tools 
and platforms used nowadays (both commercial [85, 91] and open source ones [95] 
[75]) usually concentrate on just the automatic execution of tests, collection of results, 
and creating test reports when talking about regression testing. These tools usually do 
not use techniques presented in the previous section, they do not perform test 
selection or minimization on the regression test suite. 

On the other hand, several academic tools were reported to support research on 
different regression testing techniques. The drawback of these tools is however that 
they are usually not available to the public or not maintained any more. 

TestTube [71] was a tool developed at AT&T Bell Laboratories for selective retesting of 
C programs. It instruments the source code to capture which part of the system is 
covered by each tests, then computes which tests are needed for a given modification. 

Automatic Testing Analysis tool in C (ATAC) [61, 98] combines modification-based test 
selection technique with test set minimization. It instruments the program when tests 
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are executed. Using the recorded information and costs assigned to tests the tool can 
select tests that give maximal coverage, and later it can reduce this test set with 
respect to block coverage. 

Echelon [56] was a tool developed by Microsoft Research for test case prioritization. It 
works on binary level to identify changes between the current and the previous version. 
Echelon uses a fast binary matching technique instead of expensive data flow analysis. 
The tool then prioritizes the tests according to the number of changed blocks they 
cover. Echelon also lists those blocks, which are not covered by existing tests. The 
scalability of this tool was tested using large binary production e.g. created for a project 
with one with 1.8 million LOC. 

5.3  Model based regression testing 
The previous listed approaches mainly work on source code. Instead of identifying the 
dependencies and effects of changes using code analysis techniques [72, 79, 80, 81, 
83], the analysis can be carried out on the model level. These methods have the 
advantage, among other things, that the models are usually smaller due to the 
operating on a higher abstraction level. 

The approach presented in [20] generates regression test suites from Extended Finite 
State Machine (EFSM) models. A dependency analysis searches for the effects of 
changes expressed as elementary modifications (i.e. adding, deleting or changing 
transitions), and creates test cases for the changed parts of the system. The method of 
[41] works similarly on EFSM models, and its focus is to reduce an existing regression 
test suite based on dependency analysis. 
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6 Conclusion 

We present several approaches of MBT. Modeling language, coverage criteria and 
objective of the tests (security and evolution) compose the MBT approach. 

We decide to use UML language as modeling language. So, we can develop a tool-
supported methodology that is able to compute test cases and to decide the 
conformance of an evolvable system w.r.t. security requirements expressed through 
evolvable formal models.  

So, our framework can be able to identify evolutions in the formal model, isolate non-
impacted requirements and their corresponding tests, and compute new test cases for 
the evolved will concretize these parts of the software. For the security part, we 
propose to use a dedicated test purpose to explain security properties. 

For work-package 7, the next step of the work is to prepare a dedicated approach 
based on this existing works presented in this document. So, we will study the impact 
of the evolution on model based testing approach in account of case studies 
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