

D7.1: Evaluation of existing methods and
principles

Fabrice Bouquet (INR), Frederic Dadeau (INR), Pierre-Alain Masson
(INR), Zoltán Micksei (BME), Berthold Agreiter (UIB), Bruno Legeard
(SMA), Michael Felderer (UIB), Stéphane Debricon (INR), Daniel
Varro’ (BME), Elisa Chiarani, Federica Paci, Fabio Massacci
(UNITN), Jan Jurjens (OU/TUD)

Document information

Document Number D7.1.

Document Title Evaluation of existing methods and principles

Version 6.0

Status Final

Work Package WP 7

Deliverable Type Report

Contractual Date of Delivery M6

Actual Date of Delivery 01 September 2009

Responsible Unit INR

Contributors

F. Bouquet, F. Dadeau, P.-A. Masson, Z. Micksei,
B. Agreiter, B.Legeard, M. Felderer, S. Debricon,
D.Varro’, E.Chiarani, J.Jurjens, F. Paci, F.
Massacci,

Keyword List Model Based Testing

Dissemination level PU

Evaluation of existing methods and principles | version 6.0 |
page 2 / 38

Document change record

Version Date Status Author (Unit) Description

0.1 26 June 2009 Draft F. Bouquet (INR) First version

0.2 2 July 2009 Working F. Dadeau (INR) Paragraph 4.1

0.3 2 July 2009 Working PA. Masson (INR) Paragraph 3.2

0.4 22 July 2009 Working Z. Micksei (BME) Section 5

1.0 22 July 2009 Draft B. Agreiter (UIB) Review

1.1 27 July 2009 Working

D. Varro’ (BME), E.

Chiarani, F. Paci

(UNITN)

Quality check

2.0 29 July 2009 Working B. Legeard (SMA) Review

2.1 29 July 2009 Working
J. Jurjens (OU/TUD),

E. Chiarani (UNITN)
Quality check

3.0 30 July 2009 Draft F. Bouquet (INR) Review

3.1 30 July 2009 Working

J. Jurjens (OU/TUD),

F. Massacci, E.

Chiarani (UNITN)

Quality check

3.2 13 August 2009 Working
B. Agreiter, M.

Felderer (UIB)

Section 2.1 and

review

3.3 23 August 2009 Working F. Bouquet (INR) Review

4.0 25 August 2009 Draft
F. Bouquet, PA

Masson (INR)
Review

4.1 25 August 2009 Working E. Chiarani (UNITN) Quality check

5.0 26 August 2009 Draft F. Bouquet (INR)
Minor edits + revised

version

5.1 25 August 2009 Working E. Chiarani (UNITN)
Minor edits + revised

version

5.2 31 August 2009 Working F. Bouquet (INR) Minor edits

Evaluation of existing methods and principles | version 6.0 |
page 3 / 38

6.0 31 August Final
J.Jurjen (OU/TUD),

E. Chiarani (UNITN)
Finalised version

Evaluation of existing methods and principles | version 6.0 |
page 4 / 38

Executive summary

This document provides a state-of-the-art overview on the Model-Based Testing (MBT)
methods. The aim of this work package is to develop a method that can be used for
security testing and takes evolution of a system into account. This document explains
several elements that can be used to develop such a methodology. Tests are
generated by a model-based approach. Test sets are based on particular coverage
criteria, e.g. security requirements criteria.

Following the Secure Change vision, we will propose a methodology based on the
evolution of the requirements. We propose to rely on two test sets; the first one is
computed from the model of security requirements before evolution, and the second
one is computed from security requirements after the evolution. Parts of these tests will
be dedicated to non-regression testing, whereas new tests will be generated in order to
exercise the evolved requirements. We will develop a tool-supported methodology that
is able to compute test cases and to determine the conformance of an evolvable
system w.r.t. security requirements expressed through formal models.

The document at hand consists of four parts. After an introduction on MBT, the
modeling language for MBT is presented. In this chapter we further discuss associated
tools.

The second part presents selection and coverage criteria used in MBT. Such criteria
are a very important element of a test approach because the test method explores a
sub-part of the implementation or system under test and the criteria can give the
degree of confidence in the generated tests.

The third part discusses model-based security tests. This chapter introduces work
about how security requirements can be tested in Secure Change.

The last chapter presents regression with MBT. The regression test can be seen like
the first step to establish an approach for validation of the evolution as proposed in the
Secure Change project.

Evaluation of existing methods and principles | version 6.0 |
page 5 / 38

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 4

INDEX 5

1 INTRODUCTION APPROACH MBT 7

2 MODELING FOR TEST 9

2.1 Telling TestStories 9

2.2 Transition/State Models 11

2.3 Symbolic Transition/State Models 13

2.4 Pre/Post Models 14

3 TEST SELECTION AND COVERAGE CRITERIA 17

3.1 Static Criteria 17
3.1.1 Control flow graph criteria 17
3.1.2 Data flow criteria 18

3.2 Dynamic Criteria 19

3.3 Model-based testing and verification techniques 20

4 MBT FOR SECURITY 23

4.1 Functional approach 23

4.2 Decision of Validity or Invalidity 24
4.2.1 Creation of the New Tests 25

4.3 Attack approach 26

5 REGRESSION TESTING 28

5.1 Regression testing techniques 28

5.2 Tools for regression testing 29

Evaluation of existing methods and principles | version 6.0 |
page 6 / 38

5.3 Model based regression testing 30

6 CONCLUSION 31

7 REFERENCES 32

8 TOOLS 36

Evaluation of existing methods and principles | version 6.0 |
page 7 / 38

1 Introduction Approach MBT

This chapter introduces concepts associated with the Model-Based Testing (MBT).
Each element used or necessary for MBT will be identified and discussed.

Modern software development has started to make use of models extensively, be it for
a formal representation of the specification, or for the generation of code. As proposed
in [51] we can distinguish between at least four different approaches for making use of
models in the testing process. The authors begin their matter on the importance of
modeling for the validation of a system. The question is where models originate from
and what are they used for. The authors propose four alternatives:

1. The same model is used for test case generation and for code generation of the
actual system under test (SUT).

2. The SUT is implemented manually out of the specification and the model is
extracted in an automatic way from the implementation. It is then used in order
to generate the tests

3. The model is created manually starting from the system specification and it is
then used to generate tests.

4. Two distinct models are used, one to generate tests and one to generate code
for the implementation.

In fact, the first scenario has two problems. One is due to the lack of redundancy
between the expected behavior of a system (model) and its actual behavior
(implementation). This redundant information is crucial to establish a verdict. The other
problem is due to constraints on the level of abstraction, the model should be very
close to the implementation level to allow the generation of code.

The second scenario also has the problem of lack of redundant information. The third
and fourth scenarios provide the best conditions for verifying the quality of the SUT.

For Secure Change the third and fourth scenarios, which consider a series of
validations in which separate models are used for test generation, seem to be the most
promising ones. The idea is to formalize the specification and create an abstracted
view of the system. This abstract view allows the usage of dedicated tools to automate
the production and the execution of tests. These scenarios are also the optimal ones
according to [55] and [51]. In both cases the views of software developers and test
engineers are presented in a separated way.

In fact, the fourth scenario can be mixed with the first one. It is possible to have one
single model, which is split into two separate views to establish a strong link between
the implementation API and the model used for test generation.

One of the major research areas in model-based testing is the automatic generation of
test sequences. Test sequences must be executed on the implementation under test
(IUT). Tools such as [68] or [94] (now Leirios marketed as Smartesting), [76] or [82],

Evaluation of existing methods and principles | version 6.0 |
page 8 / 38

work on models [50] in the form of concurrent automata like Statemate or UML
statecharts with OCL or in the form of Pre/Post models like B or Z and generate tests
which guarantee satisfaction of well-defined model coverage criteria such as the
coverage of all transitions or states in the model, the coverage of effects, or the
coverage of inputs. These techniques are based on coverage criteria of models and do
not necessarily correspond to coverage criteria at the code level.

A second approach also takes into account more dynamic criteria. The model is
completed by other information, such as properties or schema that are used in the
definition of so-called property-based coverage criteria.

For example, a coverage criterion can be based on covering the test purpose or target
that has to be defined by the user, usually in a similar formalism to the model of the
implementation under test (IUT). Sometimes the user has to model the environment of
the IUT. The tool combines the model of the IUT with the test purpose and/or
environment to automatically generate tests focusing on behaviour specified by the
purpose. The test purpose or environment can be seen as another form of test model.
Such tools have been developed for several modeling paradigm as in [86] and [96] for
transition systems, [87] for transition systems extended with data, [69] (currently being
integrated into the Scade tool) and the [100] tool for Lustre.

Model-based statistical testing (MBST) was also proposed as a black-box test
technique that enables the generation of representative tests from the tester’s or user’s
perspective [44]. In MBST a so-called usage model is built to describe the relevant
system inputs, input sequences, and system responses as a discrete time Markov
chain, a state machine annotated with transition probabilities.

A specific feature of MBST is the estimation of test object reliability based on the test
cases executed and test results [9]. Further extensions have been developed to define
equivalence classes for the test oracles and incorporate requirements coverage of
usage models and test cases. MBST is supported by academic [93] and commercial
[90] tools.

Evaluation of existing methods and principles | version 6.0 |
page 9 / 38

2 Modeling for test

In this chapter, we present an overview of several techniques using models in the
testing process. We focus on the scenarios three and four introduced in the previous
chapter because they have been considered as the most promising ones. We discuss
one approach for scenario four, where two distinct models are used, one for testing
and one for system modeling (Telling TestStories). The other approaches in this
chapter represent scenario three, where the test model is extracted from the system
specification and used for generating test cases (Transition/State Models, Symbolic
Transition/State Models and Pre/Post Models).

2.1 Telling TestStories
Model-driven testing is based on the derivation of executable test code from models in
a MDA manner [64]. It supports an implementation resp. technology-independent view
on testing and the adaptation of tests to modified requirements with minor effort. This
makes model-driven testing an ideal testing strategy for service oriented systems. In
such a setting various component- and communication technologies, the dynamic
adaptation and integration of services and the unavailability of service implementations
and controls have to be considered.

Telling TestStories (TTS) [24] provides a testing methodology and a framework for
model-driven system testing of service oriented systems. Compared to many other
model-based testing approaches, TTS is based on separated system and test models
which are connected via common model elements. An overview of the TTS artefacts is
depicted in Figure 1.

The requirements model contains the specification for system development. Its formal
part consists of actors, use cases and types, denoted in a use case diagram and a
class diagram. The formal requirements are based on written or non-written informal
requirements.

Evaluation of existing methods and principles | version 6.0 |
page 10 / 38

Figure 1: Overview of TTS Artefacts

The system model describes the system structure and system behavior in a platform
independent way. Its static structure is based on actors providing and requiring
services and its dynamic structure is based on global workflows modeling the behavior
between actors and local workflows modeling the behavior within actors.

The test model defines the test configuration, the test data and the test scenarios as
so called test stories. Test stories are controlled sequences of service operation
invocations exemplifying the interaction of actors. Test stories may be generic in the
sense that they do not contain concrete objects but variables which refer to test values
provided in tables. Test stories can also contain setup and tear down procedures and
contain assertions for test result evaluation. The service operations and actors of a test
story are shared with the system model.

The test implementation is generated by a model-to-text transformation explained in
[26]. It generates test code that can be executed by a test execution engine. Adapters
are needed for connecting to the system under test.

Metamodels have been defined to define consistency and coverage criteria for the
system and the test model.

If the system model and the test model are created manually, then the framework
checks consistency between them automatically and the test model has to fulfill some
coverage properties with respect to the system model. Alternatively, if the system
model is complete to a certain sense then behavioral parts of the test model can be
generated or otherwise if the test model is complete, behavioral fragments of the
system model can be generated.

The metamodel elements can be mapped to UML metaclasses and can therefore be
created and edited with standard UML tools. The system model can even be mapped
to SoaML and the test model can be mapped to the UML Testing Profile which ensures
compatibility with existing standards.

Evaluation of existing methods and principles | version 6.0 |
page 11 / 38

A very important property of TTS is the traceability between system requirements,
service operations, test stories and the implementation. This enables the assignment of
unexpected system behavior to requirements resp. to system or test model elements.
Therefore, the system and test model can be created, transformed, executed and
analyzed iteratively even in a test-driven manner based on changing requirements and
services. Furthermore, TTS allows for the execution of tests during system
development by creating mock services for unfinished parts of a system.

2.2 Transition/State Models
In this section, we address the conformance testing for systems modelled by using
labelled transition systems (LTS or -- Labelled Transition System). We are mainly
interested in the transition systems labelled with inputs and outputs [57] (also known
IOLTS -- Input / Output Labelled Transition System) that are more widely used in
conformity testing. Compared with the LTS, the IOLTS are particularly well suited to
model reactive system, because they distinguish controllable actions from observable
actions.

In the following we clarify some notions and notations on systems transitions labelled
by enrichment of the distinction input / output and the concept of quiescence. Then, we
explore relationship with Ioco (Input-output conformance) used to determine the verdict
conformity between the model and the system under test. Then we define the notion of
test cases.

The formalism of labelled transition systems (def. 1) allows to model a system in the
form of sets of statements (including in particular the initial state of the system), name
of actions (among which we can distinguish the internal action τ) and transitions. The
modeling of a system and its environment can be described by a LTS, but in this case,
there is no difference between emissions and receptions. Since for testing purposes, it
is important to separate between what can be controlled and what can be observed,
the enrichment of LTS in IOLTS (def. 2) by a signature action is useful. It may be noted
that sets of action names input and output are separated.

Definition 1 (Labelled Transition system – LTS). A LTS is defined by a quadruplet <

Q, q0, A, → > where:
- Q is a bounded set of non empty state,
- q0 ∈ Q is the initial state of system,
- A ∪ {τ} is a set of action terms with specific action τ ∉ A. τ characterized all

internal action (unobservable). We noted Aτ = A ∪ {τ}

- → ⊆ Q x Aτ x Q transition relation.

Definition 2 (Input Output Labelled Transition syst em – IOLTS). An IOLTS is
defined by a quadruplet < Q, q0, A, → > where:

- Q is a bounded set of non empty state,
- q0 ∈ Q is the initial state of system,

Evaluation of existing methods and principles | version 6.0 |
page 12 / 38

- A ∪ {�} is a set of action terms with specific action τ ∉ A. τ characterized all
internal action (unobservable). A = AI ∪ AO and AI ∩ AO = ∅ with AI set of all
input actions (received) and AO set of all output actions (sending). Input and
output actions can be activate from any state.

- → ⊆ Q x Aτ x Q transition relation.

The notion of quiescence (def. 3) explains normal blocking situations of the system.
Among these blocking situations, we can distinguish:

• The blocking of exit (or output lock): this is a deadlock in a state from which no exit
action and no internal action are specified.

• The "deadlock": these blocking situations arise in a state from which no transition is
activated.

• The "livelock": these situations arise when there is a path (not empty) of internal
actions from a state that leads to the same state.

This quiescence is represented by the special action δ. In practice, observation of
quiescence in the execution of a test case is performed at the expiration of a timer.

Definition 3 (Quiescence) . As an IOLTS < Q, q0, A, → >, a state q ∈ Q is called
quiescence if there is no transition of Aτ activable from the state q.

To compare the system under test to its model, the formal relationship can be verified
with all the correct implementation with regard to the model. The ioco conformance
relation [57] is based on inclusion of traces. An implementation I conforms to its
specification S, if for every trace σ of S, the system under test produces outputs and
quiescence included in the model. A test case and IOLTS statements are marked by
Pass, Fail or Inconclusive. This marking will set the verdict. Running a test case is
conducted by parallel composition of the latter with the system under test. The verdict
is given by the marking of the status achieved by a complete trace of the parallel
composition of the test case and system under test.

To be complete, the generation of test cases should consist of extracting all traces of
the model leading to a deadlock situation. In practice, we are quickly confronted with
situations of combinatorial explosion due to the number of statements, branches and
loops.

The finite state machines are very close to the labelled transition systems. As shown in
definition 4, the difference lies in the fact that the sets of states and transitions are finite
and that all statements of acceptance are used to determine the correct execution of
the system.

Definition 4 (Finite Sate Machine - FSM). A Finite State Machine is a quintuplet < S,

Σ, δ, s0, F >, where:

- S is a finite set of states,
- Σ is a finite set of actions,

Evaluation of existing methods and principles | version 6.0 |
page 13 / 38

- δ ; S x Σ → S a transition function,
- s0 ∈ S is the initial state,
- F ∈ S is a set of all final states.

The Unified Modeling Language (UML) is widely used as a modeling support for
model-based testing. There are several reasons for this interest. First, UML provides a
large set of diagrammatic notations for modeling purposes, with several
complementary representations. A static representation (i.e. class diagrams) is used to
model the points of control and observation of the IUT and the data that represent the
abstract state of the IUT. A dynamic representation (e.g. state diagrams or activity
diagrams) is used to model the expected behaviour of the IUT. Second, the Object
Constraint Language (OCL [60]) associated with UML makes it possible to have
precise models – this means that the expected behaviour can be formalized using
OCL. Third, UML is the de-facto industrial standard for modeling enterprise IT
applications; most software engineers have had some first level training on UML – this
is an important point to facilitate the acceptance of a disruptive process such as model-
based testing.

However, UML contains a large set of diagrams and notations, defined in a flexible and
open-ended way using a meta-model and allows for different interpretations of the
semantics of the diagrams by different UML tools. So for practical model-based testing
it is necessary to select a subset of UML and clarify the semantics of the chosen
subset so that model-based testing tools can interpret the UML models.

There are numerous model-based testing approaches that use UML as a modeling
notation. Some of them are based on sequence or interaction diagrams to express
scenarios (see e.g. [11]), state machines to express behaviour models (see e.g. [59])
or combine them (see e.g. [17]). Few approaches are using OCL as an action
language for model-based testing. B. K. Aichernig proposes an approach based on
mutation analysis of OCL specifications [13], and [10] proposes a combination of test
cases using very similar approach. But currently, there is no subset of UML/OCL
clearly proposed for model-based testing, except in [15]. This subset is UML/OCL used
by [94] model-based testing tool.

2.3 Symbolic Transition/State Models
Symbolic Labelled Transitions Systems (SLTS) or STS (Symbolic Transition System) is
an extension of labelled transition systems taking into account the explicit data flow.
The definition of an STS is given in definition 5, [31], shows that the enrichment-related
assets in STS are the introduction of:

- State variables,

- Parameters of action,

- Guards on transitions (expressed on state variables and parameters)

- Terms expressing changes of state variables during transitions.

Evaluation of existing methods and principles | version 6.0 |
page 14 / 38

Definition 5 (Symbolic Transition System - STS) . A Symbolic Transition System is 7-

uplet < L, l0, ν, t, I, A, →>, where:
- L is a finite set of states,
- l0 is the initial state,
- V is the set of state variables
- I is the set of parameters,
- A is the set of action,

- → ⊆ L x A x P(V ∪ I) x T(V ∪ I)V is transition relation, with P(V ∪ I) a set of first
order logic formula on the state variables and parameters (guard of action) and T(V
∪ I)V a set of terms on the state variables and parameters describe modification of
state variables by the action.

The semantics of STS is given in terms of LTS [31, 45]. The use of labelled transition
systems for generating symbolic tests requires the use of other techniques than a
simple path finding in a reachability graph. For example, the symbolic animation of the
model can extract symbolic test cases that will be instantiated by a solver.

2.4 Pre/Post Models
The B language [1] is a modeling language based on the logic and the set theory. A
system is modeled as an abstract machine (or a set of abstract machines as part of the
composition of machines and the process of refinement). A B machine consists of
various clauses including:

SETS: declaration sets listed

CONSTANTS: declaration of constants

PROPERTIES: properties on constants

VARIABLES: declaration of variables

INVARIANT: definition of invariant properties on the system

ASSERTIONS definition properties arising from the invariant

INITIALIZATION: initialization of variables

OPERATIONS: Operations

The system actions are defined by operations in the form of substitutions. Among the
operators of substitutions, we find substitutions kept (ANY, SELECT), substitutions of
choice deterministic (IF, CASE) or indeterminate (CHOICE), substitutions of
assignment (:=, :∈), without the substitution effect (skip) and multiple substitutions (||),
which allows substitution of composing two in parallel. The B language was introduced
as part of the method B [1] that aims at the development of software, from its
specifications, in successive stages of refinement and proof. Firstly, the system is
formalized at a high abstraction level, and then it is refined by successive stages to
reach the abstraction level of the implementation from which the code of the
implementation can be produced. During this process, the proof allows to:

Evaluation of existing methods and principles | version 6.0 |
page 15 / 38

- Check the consistency of a machine, by proving that the invariant is preserved by the
substitutions of the initialization and of the operations,,

- Check the refinement, which means proving the a machine is a correct refinement of
another (more abstract) one.

As a consequence, many tools have been developed around the B language, including
model-checkers, that allow for test generation from B models. Some of these tools are
presented in the following sections.

The JML [42] is an annotation language for Java programs. It allows to model
specification in a program in the form of annotations that can be:

- Pre-conditions and post-conditions on the functions and methods,

- Class invariants,

- Loop invariants.

The JML is based on a concept of design by contract, whose main idea is that
interactions between a class and its clients are governed by contracts expressed by
properties. Thus, the "client" guarantees the respect of certain constraints when calling
a method of a class (respect of the preconditions of the method). This guarantees the
respect of some class properties (expressed as post-conditions) in return. The
properties are expressed in first-order logic on the attributes of the class and the
parameters of methods or functions. For example, Figure 1 shows the JML annotations
to a method of swapping two values in an array of integer (tab [i] and tab [i + 1]):

- Requires the clause gives the pre-conditions of the method,

- Ensure the clause gives the post-conditions of the method,

- Assignable clause gives variables whose value can be changed.

/*@ requires tab != null && tab.length > 1 && i>=0 && i+1<tab.length;
@ ensures (\forall int j; ((j>=0 && j<i)||(j>i+1 && j<tab.length)) ==> tab[j]==\old(tab[j]))
@ && tab[i]==\old(tab[i+1]) && tab[i+1]==\old(tab[i]);
@ assignable tab[i],tab[i+1];
@*/
void permut(int[] tab, int i){
int temp0 = tab[i];
tab[i] = tab[i+1];
tab[i+1] = temp0;
}
Figure 2. Example of JML annotation

Many tools have been developed for JML, the best-known being:

- Jmlc: a compiler that can compile JML annotations in the Java bytecode enabling
assertion checking at runtime,

- The unit testing tool that combines jmlunit compiler JML and JUnit tool to use JML
annotations for the preparation of verdicts,

- The static verification tool escjava2, which uses JML annotations to detect errors,

Evaluation of existing methods and principles | version 6.0 |
page 16 / 38

- The Key proverb based sequent calculus that is used to generate proof obligations
from JML annotations and prove them in an automatic or semi-automatic manner.

Furthermore, we cite two tools for test generation from formal specifications in JML:
JML-TT and Jartege.

ASML languages [7, 8] and spec # [19] are two modeling languages based on the ASM
(Abstract State Machine). The ASM is based on the description of statements and
symbolic functions of transformation of these states. Spec # model takes the form of
annotations in a C #. It allows defining a DSO through the formalization of pre-
conditions and post-conditions. The tool for test generation specExplorer supports
these languages

Evaluation of existing methods and principles | version 6.0 |
page 17 / 38

3 Test Selection and Coverage Criteria

An issue of model based-testing is to be able to measure and insure coverage from
test to the model. The intention guarantees only test coverage on model and not on
IUT. We identified two kinds of criteria to insure coverage.

3.1 Static Criteria
Static criteria are based on two coverage approaches: control flow oriented and data
flow oriented.

3.1.1 Control flow graph criteria

To adopt a method for structural testing based on the cover of the graph control is to
propose a certain set of paths on a graph in order to form tests campaign. Satisfy a
structural testing method for a given coverage is therefore to find tests that enhance
control paths (i.e. paths of execution) and covering paths provided by the method
adopted. Under the criteria based on the graph control, there are many criteria for
coverage:

• Coverage of all-nodes or statement coverage,

• Coverage of all-arcs or decision coverage,

• Coverage of path and internal boundaries,

• Coverage of all i-paths,

• Coverage of all paths.

This list is ordered from the lower criterion to test to the highest (exception made of the
cover paths and internal limits that is not classifiable). In general, the stronger this
criterion is the higher is the number of test data to satisfy.

To cover criteria, a test suite must activate a dedicated part of specification as follow
[58]:

• State Coverage (SC): test suite must execute every reachable statement

• Decision Coverage (DC) : test suite must ensure that each reachable decision is
made true by some tests and false by others tests. Decisions are the branch criteria
that modify the flow of control in selection and interaction statement.

• Path Coverage (PC) : test suite must execute ever path to satisfy through the
control flow graph.

• Condition Coverage (CC): test suite achieves CC when each condition is tested
with a true result and also with a false result. For condition containing N conditions,
two tests can be sufficient to achieve CC.

Evaluation of existing methods and principles | version 6.0 |
page 18 / 38

• Decision/Condition Coverage (D/CC): test suite achieves D/CC when it achieves
both decision coverage (DC) and condition coverage (CC).

• Full Predicate Coverage (FPC): test suite achieves FPC when each condition is
forced to true and to false in a scenario where that condition is directly correlated
with the outcome of the decision.

• Modified Condition/Decision Coverage (MC/DC): This coverage strengthens the
directly correlated requirement of FPC by requiring the condition c to independently
affect the outcome of the diction d. A condition is shown to independently affect a
decisions outcome by varying just that condition while holding fixed all other
possible condition.

• Multiple Condition Coverage (MCC): test suite achieves MCC if it exercises all
possible combination of condition outcomes in each decision.

In [48], for code-based coverage we have PC � DC � SC, where C1 � C2 indicates
that every test suites satisfies C1 also satisfies C2.

More generally as propose in [58], fig. 3 give hierarchy between criteria.

Figure 3 – The hierarchy of control flow coverage criteria

In some case, we can define dedicated criteria as transition based coverage criteria as
in Finite State Machines. These criteria are close to the previous criteria.

3.1.2 Data flow criteria

Control flow can be annotated with extra information regarding the definition and use
of data variables. Informally, a definition of a variable is a write to the variable and a
use of a variable is a read from it. For a given variable v, we say that (d,u) is a def-use

Evaluation of existing methods and principles | version 6.0 |
page 19 / 38

pair if d is a definition of v and u is a use of v, and there is a path from d to u that is free
to other definitions of v. So data flow criteria attempt to cover:

- All-defs : the all-definition criterion requires a test suite to test at least one def-
use pair (d,u) for every definition d, that is, at least one path from each definition
to one of its feasible uses.

- All-uses : the all-uses criterion requires a test suite to test all def-use pairs (d,u).
This means testing all feasible uses of all definitions.

- All-def-use-paths : The all-def-use-paths criterion requires a test suite to test all
def-use pairs (d,u) and to test all paths from d to u.

We have this hierarchy:

All-def-use-paths � All-uses � All-defs

We can define complementary criteria with external additional information on the
model.

3.2 Dynamic Criteria
Dynamic criteria are about the sequencing of states or actions of the model. Several
ways have been explored to express such criteria. For example in [4], the dynamic
criterion is a sequencing of states expressed as a temporal logic (PLTL) property. It is
a sequencing of actions expressed in the shape of an IOLTS in [18] and [35], or as a
regular expression in [43].

We propose to describe a dynamic criterion, denoted as TP for Test Purpose, as a
sequencing of states and actions. Its semantics is an automaton whose states are
interpreted as state properties and whose transitions are labelled by action names.

In our approach, the validation engineer manually describes by means of a test
purpose TP (see Def. [TP]) how he intends to test the system, according to his know-
how. We have proposed in [37] a language based on regular expressions, to describe
a TP as a sequence of actions to fire and states to reach (targeted by these actions).
States are described as state predicates. Actions can be given either explicitly, or
under the generic name $op.

Definition [TP] (Test Purpose). A test purpose on a model M (with a set OM of
operations) is a tuple <QP , q0

P, TP , λP , QP, Qf
P> where QP is a finite set of states, q0

P
is an initial state, Qf

P ⊆ QP is a set of accepting states, TP ⊆ QP × (OM ∪ {$op}) × QP is
the set of labelled transitions and λP ⊆ QP → PredM is a total function that associates
with each state q a state predicate denoted as λP(q) (⊆ PredM).

Evaluation of existing methods and principles | version 6.0 |
page 20 / 38

In [38], we have presented a test generation approach from a TP and a B model, in
which every action is described by an operation. This method proceeds by unfolding all
paths of the automaton associated to the TP. Each path is a symbolic test, in the sense
that the values of the operation parameters are not defined. They will be defined by an
instantiation phase that uses constraint solving techniques and boundary valuation
strategies. Also, the test must be concretized to become executable on the IUT. This
approach has been successfully experimented on the industrial application IAS
(Identification Authentication and Signature) with Gemalto.

(a)

(b)

Figure 4 – Generating tests from dynamic selection criteria

Our approach is depicted in two views in Fig. 4. View 4(b) shows the usual MBT
process with static (structural) selection criteria. The MBT process with dynamic criteria
is obtained by replacing the input M of View 4(b) by the output SP of View 4(a).

View 4(b). From a behavioural model M written by the validation engineer and from
static selection criteria on the control structures of the model, the test generation tool
computes a set of abstract tests AT. The instantiation computes parameter values for
the operation calls, providing a set of instantiated tests IT. This relies on data selection
criteria such as boundary valuation strategies. These tests are still as abstract as M
and must be concretized via a concretization layer CL into a set of concrete tests CT,
that are executed on the IUT. This delivers a verdict of success or failure, by
comparing the results predicted by M with those returned by the IUT.

View 4(a). The input M in View 4(b) is replaced with a model SP that results from the
synchronization of M with a dynamic selection criteria TP. Thus executions of SP are
executions of M that match TP.

3.3 Model-based testing and verification techniques
Research on model-checking has focused on the ability of these tools to fight the state
space explosion and on increasingly expressive modeling paradigms and languages to

Evaluation of existing methods and principles | version 6.0 |
page 21 / 38

express the property to be proved. Tools such as SPIN [84], Uppaal [88], CADP [77]
have been developed to prove reachability, safety, liveness and fairness properties
expressed in temporal logics on models in the form of communicating automata, timed
automata models or process algebra. A recent evolution is the use of SAT or SMT [65]
solvers to perform bounded model checking on infinite-state systems (SAL) [73], hybrid
systems (HySAT [74], HyTech [83]) or Lustre (Prover).

Another direction is probabilistic model-checking with tools like PRISM [92] and
statistical model-checking [22] which goal is to qualitatively or quantitatively evaluate
the satisfaction of a property on a model.

Embedded systems have particular characteristics to be taken into account by V&V
tools. They are often cyclical reactive systems that must be modelled using specialized
paradigms such as synchronous languages, for which specialized tools such as Gatel
and Prover have been developed. A combination of continuous and discrete-event
behaviour may need to be modelled, using the hybrid systems paradigm.

This is treated by the HySAT model-checker but the research on testing of hybrid
systems is a very recent research area [16]. They are usually real-time so models with
an explicit representation of time, or at least the order in which discrete events take
place, are necessary to represent timing properties. This is possible in the analysis
tools based on timed automata or Petri Nets because timing properties are more
susceptible to analysis than to test. The software used for embedded systems is often
concurrent meaning that all possible inter-leavings of concurrent behaviour must be
taken into account. Here again, analysis techniques are better developed than test,
although there is research on test of concurrent systems [54]. Because of the close
integration of software and hardware for embedded systems, software must often be
tested in the target environment, introducing problems of injection of test-case values
and observability of results. This has motivated the development of simulation
languages such as SystemC [102] and methodologies to test embedded software with
hardware in the loop. The model of computation introduced with the Signal
synchronous language [67], then further developed in the Polychrony [89] workbench
and industrialized in RT-Builder [101], consists in considering a median (polychromous
or multi-clocked) model of computation into which heterogeneous specification can be
interpreted, and from which sequential or distributed real-time code can be generated,
used for analysis, simulation and test purposes.

The first question addressed by this project is the relationship between the specialized
models used in model-based V&V and more global models used for model-based
design and development, including the question of how to obtain V&V models from
requirements, specifications and design and development models. Model-based V&V
technologies also pose the second problem addressed by this project: the link between
the model and the implementation that is necessary to ensure that properties
verified/validated on the model are satisfied by the implementation. Although automatic
code generation was supposed to eliminate this problem, we see that on the one hand
automatic code generation does not always guarantee that the semantics of the model
and the implementation are identical in all respects and on the other hand, the
implementation often includes portions of code which have had to be developed by
hand or which correspond to "library" or "external" components of the model whose

Evaluation of existing methods and principles | version 6.0 |
page 22 / 38

semantics is left implicit. This second problem will be addressed with the aid of a
second class of V&V tools which have attracted a lot of research effort and which are
now relatively mature. These are the tools that work on the source code of the
implementation, either analyzing it statically or generating tests to cover objectives
(such as coverage criteria) defined on the implementation.

Evaluation of existing methods and principles | version 6.0 |
page 23 / 38

4 MBT for Security

This section presents the use of the Model-Based Testing process in the context of
testing the security of a system. This section is divided into two parts. The first one
deals with a functional approach in which the security aspects of the system are
embedded within the model and the subsequent test generation approach focuses on
these aspects to exercise it. The second part is dedicated to approaches that consider
a modification of the model that represents common attacks that can be performed on
the system.

4.1 Functional approach

A part of the security requirements w.r.t. a system can be expressed as security
properties. Here, we consider a context in which the security aspects of the system are
embedded within the functional model. From the model, a set of security properties is
formally expressed. These properties should hold on the model as it incorporates the
security aspects. We do not address here the question of formal verification of these
properties on the model. This can be achieved for example by model-checking. The
aim of testing w.r.t. security properties is to validate that the properties also hold on the
implementation under test (IUT). A formal verification of the IUT is usually out of reach
due to its impracticable size.

Our idea is to use the security properties as test purposes, i.e. as dynamic selection
criteria, to guide the test generation. We have exposed in [46] that this is a mean to
automatically generate security tests from the model.

Now that we are in the context of life-long evolving systems, change has to be taken
into account to see the impact it has on a test suite, dedicated to security. We present
here an approach from Fraser, Aichernig and Wotawa [30], to handle model changes
for regression testing purposes, or to update a test suite. The approach is based on
model-checking. It aims at reducing the effort of recreating test suites after a model is
changed. It also allows for minimizing the number of regression tests after a change.

The considered models are Kripke Structures, i.e. state/transition models. States are
labelled with a set of atomic propositions (on the state variables) that hold in this state.
A transition relation models the passing from a state to another. A test case is a finite
prefix of a path of Kripke’s structure, with its oracle. It can automatically be converted
into a verifiable model [3]. A test suite is a set of test cases, issued from a version of
the model.

In case of a model evolution, some of test cases in the test suite issued from the
previous version of the model become invalid (i.e. obsolete), while others remain valid.
Invalidity is pronounced if the test case goes through a state or a transition that no
longer exists in the new model, or if it goes through a state whose labelling has
changed.

Evaluation of existing methods and principles | version 6.0 |
page 24 / 38

Ideas presented in the paper permit to decide by model-checking if a test case are still
valid after a model change. After what valid test cases can be used as regression tests,
whereas the invalid ones can be used as non stagnation tests (to test that what was
supposed to change has indeed changed). Additionally, new test cases are created by
either adapting the old (invalid) ones (i.e. by re-computing their oracle), or by
selectively creating new ones. Model-checking is used to compute or adapt new test
cases.

4.2 Decision of Validity or Invalidity

Deciding about the validity of tests in the old test suite can be obtained by symbolically
animating all the tests on the new model. Tests for which the results have changed or
that can no longer be animated are the invalid ones. The others are valid. With a
model-checker, this result can be obtained by model checking a special temporal
property on the test case model. The property claims that output values of the test case
and the new model are equal for the length of the test case. Each test case that results
in a counter example is invalid. Remaining tests are still valid, which means that they
are not affected by the model change. The drawback of this approach is that the whole
new model is involved in model-checking.

To avoid this, the validity or invalidity of a test case can preferably be obtained by
checking its model against some temporal properties called change properties. They
can be created automatically from the model source file. If a transition condition or
target is changed, a test case is still valid if it fulfils the property

G(changed_condition ⇒ X variable=changed_value).

This property claims that on a changed condition, the value of a variable after the
transition equals the changed value.

If a variable transition is removed, it can only be determined whether a test case takes
the old transition using a negated property

G(old_condition ⇒ X ¬(variable = old_value)).

This property claims that on an old condition, the value of a variable after the transition
does not equal the changed value. Any test case that takes the old condition results in
a counter example.

Evaluation of existing methods and principles | version 6.0 |
page 25 / 38

4.2.1 Creation of the New Tests

For the creation of the new tests, 3 methods are proposed in [30].

Adaptation. This first method adapts the old test to the new model, by re-computing
the oracle of tests from the new model. The test-case model contains a state counter
State, and a maximum value MAX. The adaptation can be obtained by querying the
model-checker with a particular property, which achieves a trace where the value of
State is increased up to MAX. The drawback of this method is that some new
behaviours will not be covered, if there are no related obsolete test cases.

Update. The update method is based on trap properties [32]. It is a generalisation of
[62] on trapping differences between two versions of a model, by means of a
comparator. A trap property is a temporal property dedicated to achieving a given
coverage. For example, claiming that a particular (reachable) state cannot be reached
achieves the coverage of that state. Depending on which coverage criteria are
targeted, a set of trap properties is chosen accordingly. Here, a set P of trap properties
is computed for the model before change, and a set P’, achieving the same coverage,
is computed for the model after change. The new tests are obtained by model-checking
trap properties in the difference P – P’.

Focus on Model Changes. This method proceeds by automatically rewriting the
property and the model before the model-checker is called. The principle of the
rewriting is as follows:

Rewriting of the model: a boolean variable named change is added to the model (in
fact, one boolean variable change is added per change). The change variable is
initialized to false, and it takes the true value when the change occurs. It keeps the true
value afterwards.

Rewriting of the property: all temporal operators in the formula are re-written to include
an implication on the change variable. This achieves that only such counter examples
are created that include the changed transition.

As we have seen, this approach is based on state-transition models and temporal
properties, and it makes use of model-checkers. Querying a model-checker with a
temporal property has some similarities with animating a test purpose on a behavioural
model, in the sense that it computes selected traces by means of a dynamic selection
criterion. So we wonder if the approach of [30] could be adapted to our framework,
where we use pre-post models instead of state-transitions ones, and where we perform
symbolic animation rather than model-checking.

Evaluation of existing methods and principles | version 6.0 |
page 26 / 38

4.3 Attack approach
Usually models that are used for the test generation are supposed to be correct and
attack-resistant. In an attack-driven approach, a common practice is to downgrade the
model so that he might actually contain an error that can be revealed by an attack.
Figure 5 illustrates this principle.

Figure 5. Model modification to accept attacks

The model modification makes it possible to play attack scenarios on the model so that
the response provides an observable answer to the attack. Once a test representing
the attack is actually played on the IUT, if this latter reacts as the modified model, then
the IUT presents a weakness.

This approach is called mutation-based testing [49]. Mutations that are introduced are
done according to a fault model. It may represent simple syntactical modifications (e.g.
replacement of mathematical operators) or more complex ones, motivated by the
semantics of the considered model/system.

The modified model is then used in a standard test generation process. Nevertheless,
the mutation guides the test generation so as to be able, at test case generation time,
to focus on introduced errors [28]. [29] present notions of relevance of test cases w.r.t.
(possibly security) properties, based on their error detection capabilities.

In [47], authors present a set of security mutations in access control policies express in
OrBAC, it can be used to drive the test generation. In this context, generated tests will
be dedicated to requesting, in specific configurations, access to secure data that
should be denied by a safe system. The success of the access, and thus, the revealing
of the secret, makes it possible to conclude on the presence on errors in the IUT.

In terms of mutation testing for system security robustness, a preliminary work has
been done by mutating the model as to simulate environment perturbations that the
system has to respond [23]. This kind of mutation can be classified as invasive
because it involves non-functional aspects of the IUT.

Safe

Model

Attack scenario

Attack

aborted/contained

Modified

Model

Attack scenario

Attack accepted

Evaluation of existing methods and principles | version 6.0 |
page 27 / 38

A related work has be done by [40], based on fault-injection techniques. The idea is to
introduce security errors in UMLsec models [39], and to use the UMLsec analysis tools
(model-checkers, etc.) to build traces leading to the error. These traces are then used
as test cases that are concretized to be executed on the system. The mutations
performed are based on adding vulnerabilities in the model, such as missing plausible
checks or wrong use of identities, originating from [5].

Recently, an overview of possible vulnerability leaks that may appear in systems,
including buffer overflows, SQL injection techniques, etc. This team, in the context of
the European project SHIELDS (FP7/2007-203), has proposed a model of
vulnerabilities causes, named Vulnerability Cause Graph (VCG), from which is derived
a formalism called Vulnerability Detection Condition (VDC) aiming to automatically test
the source code to detect vulnerabilities. This test generation is done by the TestIng
[70] tool.

Evaluation of existing methods and principles | version 6.0 |
page 28 / 38

5 Regression Testing

Changes in software’s artefacts throughout its lifecycle could make previously fixed
bugs re-appear or brake existing functionality [14]; therefore systems should be
retested after a modification is made. Changes can happen in subsequent
development phases or after the software enters its maintenance phase. This retesting
is usually referred as regression testing [12].

Regression testing is defined as “selective retesting of a system or component to verify
that modifications have not caused unintended effects and that the system or the
component still complies with its specified requirements” [33]. Therefore, the intention
is to test whether what was working before is still working, and previously fixed bugs do
not reappear.

Regression testing can be performed on any testing level (i.e., module, integration,
etc.), and it can cover both functional and non-functional requirements. However,
rerunning every test after each of the modifications is not feasible, thus a trade-off must
be made between the confidence gained from regression testing and resources used
for it [34]. For this reason, several regression testing techniques were proposed over
the years, e.g. to select only a subset of the regression test suite, what is relevant for
the current change, or to identify those new parts of the system, which are not covered
by existing tests.

5.1 Regression testing techniques
The research in the field of regression testing focused on the following problems:

a) Regression test selection: select only tests from the regression test suite that
are affected by changes.

b) Test suite minimization: find a minimal subset of test cases that preserves the
coverage with respect to a certain criterion of the original test set.

c) Coverage identification: identify those parts of the system that need additional
tests due to the change.

d) Test prioritizing: optimize the order of tests according to some criteria, e.g. to
run those tests first which are more likely to uncover bugs or which need less
time to run.

e) Test suite execution: automatically execute the test in an efficient way.

For regression test selection techniques the basic idea is similar to the one used in
build systems (e.g. the make tool), namely that at each build only those files need to be
recompiled that have been changed or depend on a file that have been changed.
Similarly, to reduce the size of the regression test suite, and thus reduce the time and
resources needed to execute it, one can select only those tests that work on changed
parts of the system. Rothermel and Harrold published a detailed survey paper about

Evaluation of existing methods and principles | version 6.0 |
page 29 / 38

regression selection techniques [52]. They evaluated several techniques according to
their inclusiveness, precision, efficiency and generality. The surveyed techniques
consisted of linear equation, symbolic execution, path analysis, dataflow, program
dependence graph, system dependence graph, modification based, cluster
identification, slicing, graph walk techniques, etc. Each technique had its strength or
weakness; some were able to uncover more errors, while some computed the selected
tests very fast.

As the test suite grows and changes, some tests become redundant. Test suite
minimization techniques remove test cases from the tests suite to retain only a minimal
number of test cases, while providing the same level of coverage than the original test
suite [36]. However, care must be taken, because removing too much test cases can
reduce its fault detection effectiveness.

Changes in the system can introduce new parts, which are not exercised by existing
tests. Coverage identification can map these parts of the system. Simple approaches
can use code coverage analysis tools [63] to uncover changed portions not touched by
existing tests. More advanced approaches typically use some sophisticated data
structure, e.g. program dependence graphs [27] that capture also data and control
dependencies in the source code.

Test prioritization techniques can have several goals. One can optimize the order of
the test suite to increase the rate of fault detection, code coverage, or the rate at which
high-risk faults are detected. Rothermel et al. analyzed in [53] nine test prioritization
techniques (e.g. random, prioritize in order of coverage statements, etc). Their
conclusion was that even simple approaches (which are quite easy to implement and
inexpensive) can improve the rate of fault detection. However, the performance
overhead of more sophisticated approaches was still a bit high.

Test suite execution techniques concentrate on the automatic execution and evaluation
of test cases. These techniques moved into the practice over the years, as most of the
current testing tools have these functionalities.

5.2 Tools for regression testing
Running a set of regression tests is usually part of the automatic build procedures of
popular, modern software development processes. However, industrial testing tools
and platforms used nowadays (both commercial [85, 91] and open source ones [95]
[75]) usually concentrate on just the automatic execution of tests, collection of results,
and creating test reports when talking about regression testing. These tools usually do
not use techniques presented in the previous section, they do not perform test
selection or minimization on the regression test suite.

On the other hand, several academic tools were reported to support research on
different regression testing techniques. The drawback of these tools is however that
they are usually not available to the public or not maintained any more.

TestTube [71] was a tool developed at AT&T Bell Laboratories for selective retesting of
C programs. It instruments the source code to capture which part of the system is
covered by each tests, then computes which tests are needed for a given modification.

Automatic Testing Analysis tool in C (ATAC) [61, 98] combines modification-based test
selection technique with test set minimization. It instruments the program when tests

Evaluation of existing methods and principles | version 6.0 |
page 30 / 38

are executed. Using the recorded information and costs assigned to tests the tool can
select tests that give maximal coverage, and later it can reduce this test set with
respect to block coverage.

Echelon [56] was a tool developed by Microsoft Research for test case prioritization. It
works on binary level to identify changes between the current and the previous version.
Echelon uses a fast binary matching technique instead of expensive data flow analysis.
The tool then prioritizes the tests according to the number of changed blocks they
cover. Echelon also lists those blocks, which are not covered by existing tests. The
scalability of this tool was tested using large binary production e.g. created for a project
with one with 1.8 million LOC.

5.3 Model based regression testing
The previous listed approaches mainly work on source code. Instead of identifying the
dependencies and effects of changes using code analysis techniques [72, 79, 80, 81,
83], the analysis can be carried out on the model level. These methods have the
advantage, among other things, that the models are usually smaller due to the
operating on a higher abstraction level.

The approach presented in [20] generates regression test suites from Extended Finite
State Machine (EFSM) models. A dependency analysis searches for the effects of
changes expressed as elementary modifications (i.e. adding, deleting or changing
transitions), and creates test cases for the changed parts of the system. The method of
[41] works similarly on EFSM models, and its focus is to reduce an existing regression
test suite based on dependency analysis.

Evaluation of existing methods and principles | version 6.0 |
page 31 / 38

6 Conclusion

We present several approaches of MBT. Modeling language, coverage criteria and
objective of the tests (security and evolution) compose the MBT approach.

We decide to use UML language as modeling language. So, we can develop a tool-
supported methodology that is able to compute test cases and to decide the
conformance of an evolvable system w.r.t. security requirements expressed through
evolvable formal models.

So, our framework can be able to identify evolutions in the formal model, isolate non-
impacted requirements and their corresponding tests, and compute new test cases for
the evolved will concretize these parts of the software. For the security part, we
propose to use a dedicated test purpose to explain security properties.

For work-package 7, the next step of the work is to prepare a dedicated approach
based on this existing works presented in this document. So, we will study the impact
of the evolution on model based testing approach in account of case studies

Evaluation of existing methods and principles | version 6.0 |
page 32 / 38

7 References

[1] Abrial, J.R The B Book, Assigning Programs to Meanings, Cambridge University Press,
Cambridge, 1996 (ISBN 0521496195)

[2] Aichernig, B.A, Pari Salas P.A, Test Case Generation by OCL Mutation and Constraint
Solving. QSIC 2005: 64-71

[3] Ammann, P. and Black P.E., A specification-based coverage metric to evaluate test sets.
In HASE’99, 4th int. symposium on High-Assurance System Engineering, pp. 239-248,
1999.

[4] Ammann, P., Black, P.E, and Majurski, W., Using model checking to generate tests from
specifications. In ICFEM’98, pages 46–54. IEEE, 1998.

[5] Aslam, T., Krsul, I. and Spafford, E.. Use of a taxonomy of security faults. In 19th National
Information Systems Security Conference (NISSC), pages 551-560, 1996.

[6] Ball, T., Podelski, A. and Rajamani S., Boolean and Cartesian Abstraction for Model
Checking C Programs. In Proceedings of TACAS: Tools and Algorithms for the
Construction and Analysis of Systems. Genova, Italy, April 2001.

[7] Barnett, M., Grieskamp W., Nachmanson L., Schulte W., Tillmann N., and Veanes M.,
Model-based testing with asml.net. In 1st European Conference on Model-Driven Software
Engineering, December 2003.

[8] Barnett, M., Grieskamp W., Nachmanson L., Schulte W., Tillmann N., and Veanes M.,
Towards a tool environment for model-based testing with AsmL, volume 2931/2004. 2004.

[9] Bauer, T., Böhr F., Landmann, D., Beletski, T., Eschbach, R. and Poore, J.H., From
Requirements to Statistical Testing of Embedded Systems. Software Engineering for
Automotive Systems - SEAS 2007, ICSE Workshops, Minneapolis, USA.

[10] Benattou, M., Bruel, J.-M., and Hameurlain, N., “Generating Test Data from OCL
Specification” in Proceedings of the ECOOP’2002 Workshop on Integration and
Transformation of UML models (WITUML’02), 2002.

[11] Beyer, M., Dulz, W., Zhen, F., "Automated TTCN-3 Test Case Generation by Means of
UML Sequence Diagrams and Markov Chains," ats, p. 102, 12th Asian Test Symposium
(ATS'03), 2003

[12] Beizer, B., Software Testing Techniques. John Wiley & Sons, Inc. 1990.

[13] [Bernahard et al. 05] Bernhard K. Aichernig, Percy Antonio Pari Salas: Test Case
Generation by OCL Mutation and Constraint Solving. QSIC 2005: 64-71

[14] Binder, R. V., Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Longman Publishing Co., Inc. 1999.

[15] Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N. and Utting M., A
subset of precise UML for model-based testing. In A-MOST'07, 3rd int. Workshop on
Advances in Model Based Testing, London, UK, pages 95--104, July 2007. ACM Press.
Note: A-MOST'O7 is colocated with ISSTA 2007, Int. Symposium on Software Testing and
Analysis.

[16] Brandl, H., Aichernig, B. K., and Wotawa, F., Conformance Testing of Hybrid Systems with
Qualitative Reasoning Models. MBT 2009, Fifth Workshop on Model-Based Testing,
March 22, 2009, York,UK

Evaluation of existing methods and principles | version 6.0 |
page 33 / 38

[17] Briand, L., Labiche, Y.,A UML-Based Approach to System Testing, Proceedings of the
Fourth International Conference on the Unified Modeling Language (UML’01), 2001, pp.
194-208

[18] Calamé, J., Ioustinova, N. and van de Pol, J., Automatic model-based generation of
parameterized test cases using data abstraction. ENTCS, 191:25–48, 2007.

[19] Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N. and Veanes, M.,
Model-based testing of ob ject-oriented reactive systems with spec explorer. Technical
report, Microsoft Research, Redmond, May 2005.

[20] Chen, Y., Probert, R. L., and Ural, H. , Model-based regression test suite generation using
dependence analysis. In Proceedings of the 3rd international Workshop on Advances in
Model-Based Testing (London, United Kingdom, July 09 - 12, 2007). A-MOST '07. ACM,
New York, NY, 54-62. DOI= http://doi.acm.org/10.1145/1291535.1291541

[21] Chen, Y., Rosenblum, D. S., and Vo, K., TestTube: a system for selective regression
testing. In Proceedings of the 16th international Conference on Software Engineering
(Sorrento, Italy, May 16 - 21, 1994). International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, 211-220.

[22] Clarke, E. M., Faeder, J., Langmead, C. J., Harris, L., Jha, S. K. and Legay, A.,
Distributed Statistical Model Checking of T Cell Receptor Pathway. In Proceedings of
CMSB 2008.

[23] Du, W. and Mathur A. P., Testing for software vulnerability using environement
perturbation. In Workshop on Dependability Versus Malicious Faults, International
Conference on Dependable Systems and Networks (DNS2000), Proceedings, pages 603–
612. IEEE Computer Society, 2000.

[24] Felderer, M., Breu, R., Chimiak-Opoka, J., Breu, M., Schupp, F., Concepts for Model-
Based Requirements Testing of Service oriented systems. IASTED SE, 2009

[25] Felderer, M., Zech, P., Fiedler, F., Chimiak-Opoka, J., Breu, R., Model-driven System
Testing of a Telephony Connector with Telling Test Stories. CONQUEST 2009

[26] Felderer, M., Fiedler, F., Zech, P., Breu R., Flexible Test Code Generation for Service
Oriented Systems. QSIC 2009

[27] Ferrante, J., Ottenstein, K. J., and Warren J.D., The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319–49, July 1987.

[28] Fraser, G. and Wotawa F., Using Model-Checkers for Mutation-Based Test-Case
Generation, Coverage Analysis and Specification Analysis. In Proceedings of the
International Conference on Software Engineering Advances (ICSEA 2006), pages 16-22,
Los Alamitos, CA, USA, 2006. IEEE Computer Society. ISBN 0-7695-2703-5.

[29] Fraser, G. and Wotawa, F., Property Relevant Software Testing with Model-Checkers.
SIGSOFT Softw. Eng. Notes, 31 (6): 1-10, 2006. ISSN 0163-5948.

[30] Fraser, G., Aichernig, K., Wotawa, F., Handling Model Change: Regression Testing and
Test-Suite Update with Model-Checkers, vol. 190 of ENCTS, pp. 33-46, 2007. Springer.

[31] Frantzen, L., Tretmans, J. and Willemse T.A., Test generation based on symbolic
specifications. pages 1–15. 2005.

[32] Gargantini, A. and Heitmeyer C., Using Model Checking to Generate Tests From
Requirements Specifications. In ESEC/FSE’99: 7th European Software Engineering
Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 146–162, vol. 1687 of LNCS, 1999. Springer.

Evaluation of existing methods and principles | version 6.0 |
page 34 / 38

[33] IEEE, “Standard Glossary of Software Engineering Terminology,” IEEE Std. 610.12-1990.

[34] IEEE, “Software Engineering Body of Knowledge (SWEBOK),” ISBN 0-7695-2330-7, 2004.

[35] Jard C. and Jéron T., TGV: theory, principles and algorithms. Software Tools for
Technology Transfer, 7(1):297–315, 2005.

[36] Jeffrey, D., Gupta, N., "Test suite reduction with selective redundancy," Software
Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International Conference on ,
vol., no., pp. 549-558, 26-29 Sept. 2005

[37] Julliand, J., Masson, P.-A. and Tissot R., Generating security tests in addition to functional
tests. In AST’08, pages 41–44. ACM Press, 2008.

[38] Julliand, J., Masson, P.-A. and Tissot R., Generating tests from B specifications and test
purposes. In ABZ’08, volume 5328 of LNCS, pages 139–152, 2008.

[39] Jürjens, J., Secure Systems Development with UML, Springer-Verlag, 2005.

[40] Jürjens, J., Model-based Security Testing using UMLsec. Model-based Testing 2008 (co-
located with ETAPS 2008).

[41] Korel, M., Tahat, L., Vaysburg, B., “Model Based Regression Test Reduction Using
Dependence Analysis.” In Proceedings of the international Conference on Software
Maintenance (Icsm'02) (October 03 - 06, 2002). ICSM. IEEE Computer Society,
Washington, DC, 214.

[42] Leavens G. and Cheon, Y., Design by contract with jml. http ://jmlspec.org/jmldbc.pdf,
2006.

[43] Ledru, Y., du Bousquet L., Maur, O. and Bontron, P., Filtering TOBIAS combinatorial test
suites. In FASE’04, volume 2984 of LNCS, pages 281–294, 2004.

[44] Le Guen, H., Marie, R., and Thelin T., Reliability estimation for statistical usage testing
using Markov Chains. In ISSRE 04, St-Malo, Nov. 2004.

[45] Marchand, H., Dubreil, J. and Jéron, T., Automatic test generation for security property.
Delivrable, Politess Project, 2008.

[46] Masson, P.-A., Julliand, J., Plessis, J.-C., Jaffuel, E. and Debois G., Automatic Generation
of Model Based Tests for a Class of Security Properties. In A-MOST'07, 3rd int. Workshop
on Advances in Model Based Testing, London, UK, pages 12--22, July 2007. ACM Press.

[47] Mouelhi, T., Le Traon, Y. and Baudry B., Testing security policies: going beyond functional
testing. In ISSRE’07 (Int. Symposium on Software Reliability Engineering), Trollhttan,
Sweden, 2007.

[48] Myers G. J., The Arts of Software Testing. John Wiley & Sons, 1979 ISBN 0471469122

[49] Offutt, J.,Practical Mutation Testing,. Twelfth International Conference on Testing
Computer Software, pages 99-109, Washington, DC, June 1995.

[50] Object Management Group (OMG), Model Driven Architecture, see www.omg.org/mda

[51] Pretschner, A. and Philipps, J., Methodological issues in model-based testing. In Model-
Based Testing of Reactive Systems, pages 281–291, 2004.

[52] Rothermel, G. and Harrold, M.J., “Analyzing Regression Test Selection Techniques,” IEEE
Trans. Software Eng., vol. 22, no. 8, pp. 529-551, Aug. 1996.

[53] Rothermel, J., Untch, R. H., Chu, C., Harrold, M.J., "Prioritizing Test Cases For
Regression Testing," IEEE Transactions on Software Engineering, vol. 27, no. 10, pp.
929-948, October, 2001.

Evaluation of existing methods and principles | version 6.0 |
page 35 / 38

[54] Rusu, Combining formal verification and conformance testing for validating reactive
systems, Journal of Software Testing, Verification, and Reliability, 13(3), September 2003

[55] Schieferdecker, I., Modellbasiertes Testen, Objektspektrum, March 2007 (in German)

[56] Srivastava, A. and Thiagarajan, J. Effectively prioritizing tests in development
environment. SIGSOFT Softw. Eng. Notes 27, 4 (Jul. 2002), 97-106. DOI=
http://doi.acm.org/10.1145/566171.566187

[57] Tretmans, G.J., Test generation with inputs, outputs, and quiescence. In T. Margaria and
B. Steffen, editors, Tools and Algorithms for Construction and Analysis of Systems,
Second International Workshop, TACAS ’96, Passau, Germany, volume 1055 of Lecture
Notes in Computer Science, pages 127–146, Berlin, 1996. Springer Verlag.

[58] Utting M. and Legeard, B., Practical Model-Based Testing - A tools approach. Elsevier
Science, 2006. Note: 550 pages, ISBN 0-12-372501-1.

[59] Vieira, M.E., Dias, M.S., Richardson, D.J., Object-Oriented Specification-Based Testing
Using UML State-chart Diagrams, Proceedings of the Workshop on Automated Program
Analysis, Testing, and Verification (at ICSE’00), June 2000

[60] Warmer, J. and Kleppe, A., The Object Constraint Language Second Edition: Getting Your
Models Ready for MDA. Addison-Wesley, 2003

[61] Wong, W. E., Horgan, J. R., London, S., and Bellcore, H. A. A Study of Effective
Regression Testing in Practice. In Proceedings of the Eighth international Symposium on
Software Reliability Engineering (November 02 - 05, 1997). ISSRE. IEEE Computer
Society, Washington, DC, 264.

[62] Xu, L., Dias, M. and Richardson, D. Generating regression tests via model checking. In
COMPSAC’04, 28th Int. Computer Software and Applications Conference, pp. 336–341,
2004.

[63] Yang, Q., Li, J. J. and Weiss, D. M., "A survey of coverage-based testing tools," The
Computer Journal, pp. bxm021+, May 2007. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/bxm021

[64] Zander, J., Dai, Z.R., Schieferdecker, I., Din G., From U2TP Models to Executable Tests
with TTCN-3 - An Approach to Model Driven Testing. TestCom 2005

Evaluation of existing methods and principles | version 6.0 |
page 36 / 38

8 Tools

[65] Armando, A., Mantovani J. and Platania L., Bounded model checking of software using
SMT solvers instead of SAT solvers. International Journal on Software Tools for
Technology Transfer (STTT) 11(1), February, 2009

[66] Bardin S. and Herrmann P., Structural Testing of Executables. In Proc. First Int. Conf.
Software Testing, Verification and Validation (ICST 2008), Lillehammer, Norway, April
2008.

[67] Benveniste, A., Le Guernic, P., Jacquemot, C. Synchronous programming with events and
relations: the Signal language and its semantics. In Science of Computer Programming, v.
16, 1991.

[68] Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux, F., Utting, M. and
Torreborre E., Model-based Testing from UML Models. In MBT'2006, Model-based
Testing Workshop, INFORMATIK'06, volume P-94 of LNI, Lecture Notes in Informatics,
Dresden, Germany, pages 223--230, October 2006.

[69] Blanc, B. and Marre, B.,. Test Selection Strategies for Lustre Descriptions in GATeL.
MBT2004

[70] Cavalli, A., Montes De Oca, E., Mallouli, W., Lallali, M.. Two Complementary Tools for the
Formal Testing of Distributed Systems with Time Constraints, The 12th IEEE International
Symposium on Distributed Simulation and Real Time Applications (DS-RT 2008).

[71] Chen, Y., Rosenblum, D. S., and Vo, K. 1994. TestTube: a system for selective regression
testing. In Proceedings of the 16th international Conference on Software Engineering
(Sorrento, Italy, May 16 - 21, 1994). International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, 211-220.

[72] Delmas, D. and Souyris J., ASTREE: from Research to Industry. Proc. 14th International
Static Analysis Symposium, 2007, LNCS 4634, pp. 437-451.

[73] Dutertre, B. and Sorea, M., Timed Systems in SAL, Technical Report SRI-SDL-04-03, July
2004

[74] Franzle M. and Herde C., HySAT: An efficient proof engine for bounded model checking of
hybrid systems. Formal Methods in System Design, 30(3), pp179 198, June 2007

[75] Gallio Automation Platform. URL: http://www.gallio.org/Default.aspx

[76] Gaston, C. et al. Symbolic Execution Techniques for Test Purpose Definition.
TestCom2006

[77] Garavel, H., Lang, F., Mateescu, R. and Serwe, W., CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes proceedings of the 19th International
Conference on Computer Aided Verification CAV 2007, July 2007

[78] Gotlieb, A., Inka: An automatic software test data generator. In Proceedings of DAta
Systems In Aerospace (DASIA 2001), Eurospace, The Association of European Space
Industry, Nice, France, May 2001.

[79] Gotlieb, A., Euclide: A constraint-based testing platform for critical C programs. In 2th
International Conference on Software Testing, Validation and Verification (ICST'09),
Denver, CO, Apr. 2009.

Evaluation of existing methods and principles | version 6.0 |
page 37 / 38

[80] Goubault, E., Martel M. and Putot, S., Asserting the Precision of Floating-Point
Computations: a Simple Abstract Interpreter. European Symposium on Programming,
ESOP'02, LNCS2305, 2002

[81] Goubault, E. and Haucourt, E., A practical application of geometric semantics to the static
analysis of concurrent programs. Proceedings of CONCUR 2005 in LNCS vol. 3653,
Springer, 2005

[82] Hartman, A. and Nagin, K., The AGEDIS tools for model based testing, ACM SIGSOFT
Software Engineering Notes, Volume 29 , Issue 4, July 2004.

[83] Henzinger, T.A., Ho, P.H., and Wong-Toi, H., HyTech: a model checker for hybrid
systems. Journal of Software Tools for Technology Transfer, 1(1/2):110-122, 1997

[84] Holzmann, G. J., Design and Verification of Computer Protocols. Prentice Hall Int., 1991

[85] IBM. Rational Quality Manager, URL: https://jazz.net/projects/rational-quality-manager/

[86] Jard, C., Jeron, T., TGV: theory, principles and algorithms, A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems, Software
Tools for Technology Transfer (STTT), 6, Octobre 2004

[87] Jeannet, B., Jeron, T., Rusu, V., Zinovieva, E., Symbolic Test Selection based on
Approximate Analysis, in 11th Int. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'05), LNCS 3440 , pp 349-364, Edinburgh
(Scottland), April 2005.

[88] Larsen, K. G., Pettersson P. and Yi, W., Uppaal in a nutshell. Journal of Software Tools for
Technology Transfer, 1 (1-2):134-152, October 1997

[89] Le Guernic, P., Talpin, J.-P., Le Lann J.-C., Polychrony for system design Journal for
Circuits, Systems and Computers. Special Issue on Application Specific Hardware Design.
World Scientific, August 2003. Polychrony, Website:
http://www.irisa.fr/espresso/polychrony

[90] MaTeLo tools by All4Tec, Website: http://www.all4tec.net

[91] Parasoft. Continous Regression Testing, available online. URL:
http://www.parasoft.com/jsp/technologies/technologies.jsp?navIdx=1&subMenu=0&itemId
=359

[92] PRISM: Probabilistic Symbolic Model Checker, Website:
http://www.prismmodelchecker.org

[93] Prowell, S. J., JUMBL: A Tool for Model-Based Statistical Testing, 36th Annual Hawaii
International Conference on System Sciences, 2003

[94] Test Designer, Website http://www.smartesting.com

[95] The Eclipse Foundation. Eclipse Test & Performance Tools Platform Project, URL:
http://www.eclipse.org/tptp

[96] Tretmans, J., Brinksma, E., Cote de Resyste Automated Model Based Testing in 3rd
Workshop on Embedded Systems, 2002, pp 246-255

[97] Visser, W. et al. Model Checking Programs. ASE Journal 2003

[98] Vojdani, V. and SeidlH., Region Analysis for Race Detection. Submitted to 16th
International Static Analysis Symposium, 2009.

[99] Williams N. et al. PathCrawler: Automatic Generation of Path Tests by Combining Static
and Dynamic Analysis. EDCC 2005

[100] Website: www.prover.com

Evaluation of existing methods and principles | version 6.0 |
page 38 / 38

[101] Website:http://www.tni-software.com/en/produits/rtbuilder

[102] Website: http://www.systemc.org

